bayesian models and macroeconomic analysis



Xin-She Yang Bayesian Inference in the Social Sciences Xin-She Yang Bayesian Inference in the Social Sciences Новинка

Xin-She Yang Bayesian Inference in the Social Sciences

9604.24 руб. или Купить в рассрочку!
Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book’s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.
Alexander Kniazev Introduction to Bayesian Estimation and Copula Models of Dependence Alexander Kniazev Introduction to Bayesian Estimation and Copula Models of Dependence Новинка

Alexander Kniazev Introduction to Bayesian Estimation and Copula Models of Dependence

8561.67 руб. или Купить в рассрочку!
Presents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of statistical modelsof dependence, and features a focus on copulas for risk management Introduction to Bayesian Estimation and Copula Models of Dependence emphasizes the applications of Bayesian analysis to copula modeling and equips readers with the tools needed to implement the procedures of Bayesian estimation in copula models of dependence. This book is structured in two parts: the first four chapters serve as a general introduction to Bayesian statistics with a clear emphasis on parametric estimation and the following four chapters stress statistical models of dependence with a focus of copulas. A review of the main concepts is discussed along with the basics of Bayesian statistics including prior information and experimental data, prior and posterior distributions, with an emphasis on Bayesian parametric estimation. The basic mathematical background of both Markov chains and Monte Carlo integration and simulation is also provided. The authors discuss statistical models of dependence with a focus on copulas and present a brief survey of pre-copula dependence models. The main definitions and notations of copula models are summarized followed by discussions of real-world cases that address particular risk management problems. In addition, this book includes: • Practical examples of copulas in use including within the Basel Accord II documents that regulate the world banking system as well as examples of Bayesian methods within current FDA recommendations • Step-by-step procedures of multivariate data analysis and copula modeling, allowing readers to gain insight for their own applied research and studies • Separate reference lists within each chapter and end-of-the-chapter exercises within Chapters 2 through 8 • A companion website containing appendices: data files and demo files in Microsoft® Office Excel®, basic code in R, and selected exercise solutions Introduction to Bayesian Estimation and Copula Models of Dependence is a reference and resource for statisticians who need to learn formal Bayesian analysis as well as professionals within analytical and risk management departments of banks and insurance companies who are involved in quantitative analysis and forecasting. This book can also be used as a textbook for upper-undergraduate and graduate-level courses in Bayesian statistics and analysis. ARKADY SHEMYAKIN, PhD, is Professor in the Department of Mathematics and Director of the Statistics Program at the University of St. Thomas. A member of the American Statistical Association and the International Society for Bayesian Analysis, Dr. Shemyakin's research interests include informationtheory, Bayesian methods of parametric estimation, and copula models in actuarial mathematics, finance, and engineering. ALEXANDER KNIAZEV, PhD, is Associate Professor and Head of the Department of Mathematics at Astrakhan State University in Russia. Dr. Kniazev's research interests include representation theory of Lie algebras and finite groups, mathematical statistics, econometrics, and financial mathematics.
David Insua Bayesian Analysis of Stochastic Process Models David Insua Bayesian Analysis of Stochastic Process Models Новинка

David Insua Bayesian Analysis of Stochastic Process Models

Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Kerrie Mengersen L. Case Studies in Bayesian Statistical Modelling and Analysis Kerrie Mengersen L. Case Studies in Bayesian Statistical Modelling and Analysis Новинка

Kerrie Mengersen L. Case Studies in Bayesian Statistical Modelling and Analysis

7817.88 руб. или Купить в рассрочку!
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Eugene Hahn D. Bayesian Methods for Management and Business. Pragmatic Solutions for Real Problems Eugene Hahn D. Bayesian Methods for Management and Business. Pragmatic Solutions for Real Problems Новинка

Eugene Hahn D. Bayesian Methods for Management and Business. Pragmatic Solutions for Real Problems

9604.24 руб. или Купить в рассрочку!
HIGHLIGHTS THE USE OF BAYESIAN STATISTICS TO GAIN INSIGHTS FROM EMPIRICAL DATA Featuring an accessible approach, Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems demonstrates how Bayesian statistics can help to provide insights into important issues facing business and management. The book draws on multidisciplinary applications and examples and utilizes the freely available software WinBUGS and R to illustrate the integration of Bayesian statistics within data-rich environments. Computational issues are discussed and integrated with coverage of linear models, sensitivity analysis, Markov Chain Monte Carlo (MCMC), and model comparison. In addition, more advanced models including hierarchal models, generalized linear models, and latent variable models are presented to further bridge the theory and application in real-world usage. Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems also features: Numerous real-world examples drawn from multiple management disciplines such as strategy, international business, accounting, and information systems An incremental skill-building presentation based on analyzing data sets with widely applicable models of increasing complexity An accessible treatment of Bayesian statistics that is integrated with a broad range of business and management issues and problems A practical problem-solving approach to illustrate how Bayesian statistics can help to provide insight into important issues facing business and management Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems is an important textbook for Bayesian statistics courses at the advanced MBA-level and also for business and management PhD candidates as a first course in methodology. In addition, the book is a useful resource for management scholars and practitioners as well as business academics and practitioners who seek to broaden their methodological skill sets.
Cameletti Michela Spatial and Spatio-temporal Bayesian Models with R - INLA Cameletti Michela Spatial and Spatio-temporal Bayesian Models with R - INLA Новинка

Cameletti Michela Spatial and Spatio-temporal Bayesian Models with R - INLA

5594.29 руб. или Купить в рассрочку!
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio­-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Ioannis Ntzoufras Bayesian Modeling Using WinBUGS Ioannis Ntzoufras Bayesian Modeling Using WinBUGS Новинка

Ioannis Ntzoufras Bayesian Modeling Using WinBUGS

12196.52 руб. или Купить в рассрочку!
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.
Tadele Akeba, Wondwosen Kassahun Modeling Evolution of Upper Arm Circumference of Infant.s Tadele Akeba, Wondwosen Kassahun Modeling Evolution of Upper Arm Circumference of Infant.s Новинка

Tadele Akeba, Wondwosen Kassahun Modeling Evolution of Upper Arm Circumference of Infant.s

Nowadays, quite a lot of methodology has been developed for the analysis of longitudinal studies, stemming from clinicaltrials, epidemiology, and other studies in humans. For example, hierarchical models are becoming evermore frequently. Such hierarchical models are standard in the analysis of longitudinal data, too to account the correlation steaming from the repeated measures nature. This study will be dedicated to model models for longitudinal continuous, firmly rooted inhierarchical models such as the linear mixed model. The Bayesian implementation of the models will also be explored using the freely available software WinBugs. The two approaches will then be applied on dataset from the Jimma Infants longitudinal growth study. The result demonstrated that the ML estimate sof the random effects standard deviations are smaller than the corresponding REML estimates which is different result from the Bayesian. The estimated within group residual standard deviations are identical. In general, the fixed-effects estimates obtain using ML, REML and Bayesian techniques are almost similar. The mean evolution of the upper arm circumference of infant for boys and girls is not different.
Lawson Andrew B. Bayesian Biostatistics Lawson Andrew B. Bayesian Biostatistics Новинка

Lawson Andrew B. Bayesian Biostatistics

6136.14 руб. или Купить в рассрочку!
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials. Key Features: Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques. Contains introductory explanations of Bayesian principles common to all areas of application. Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics. Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs. Highlights the differences between the Bayesian and classical approaches. Supported by an accompanying website hosting free software and case study guides. Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.
Dominique Habimana Time Series Econometrics Analysis Dominique Habimana Time Series Econometrics Analysis Новинка

Dominique Habimana Time Series Econometrics Analysis

This text book presents the application of time series econometrics methods in economics. The main focus of this book is to describe the main principles of time series models and show how they can be used to understand the process of macroeconomic variables and the way they interact each other. In this book, the autoregressive models (ARMA), vector autoregressive (VAR) models, error correction models together with the cointegration analysis, and a well explained econometric modeling procedure are described; with application in modeling and forecasting the inflation process in Rwanda as a country whose economic activities is processing so fast after the 1994 genocide. This text book is very useful for undergraduate students whose specialization is economics, econometrics, statistics and mathematics, and for postgraduate students in the fields mentioned above.
Rong Chen Nonlinear Time Series Analysis Rong Chen Nonlinear Time Series Analysis Новинка

Rong Chen Nonlinear Time Series Analysis

8838.06 руб. или Купить в рассрочку!
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Matt Sekerke Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets Matt Sekerke Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets Новинка

Matt Sekerke Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets

5997.26 руб. или Купить в рассрочку!
A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.
Michael Miller B. Quantitative Financial Risk Management Michael Miller B. Quantitative Financial Risk Management Новинка

Michael Miller B. Quantitative Financial Risk Management

6439.16 руб. или Купить в рассрочку!
A mathematical guide to measuring and managing financial risk. Our modern economy depends on financial markets. Yet financial markets continue to grow in size and complexity. As a result, the management of financial risk has never been more important. Quantitative Financial Risk Management introduces students and risk professionals to financial risk management with an emphasis on financial models and mathematical techniques. Each chapter provides numerous sample problems and end of chapter questions. The book provides clear examples of how these models are used in practice and encourages readers to think about the limits and appropriate use of financial models. Topics include: • Value at risk • Stress testing • Credit risk • Liquidity risk • Factor analysis • Expected shortfall • Copulas • Extreme value theory • Risk model backtesting • Bayesian analysis • . . . and much more
Gerald T. Fox U.S. Politics and the American Macroeconomy Gerald T. Fox U.S. Politics and the American Macroeconomy Новинка

Gerald T. Fox U.S. Politics and the American Macroeconomy

This book considers the interrelation among macroeconomic politics, macroeconomic policymakers, macroeconomic policies, and macroeconomic perform ance. This interaction is examined using the expectational Phillips curve model, which measures macroeconomic outcomes in terms of inflation and unemployment. The subject of macroeconomic politics mainly focuses on voter behavior, presidential re­election ambition, and political party priorities. These political factors influence the macroeconomic policy actions of the president, Congress, and the central bank; the analysis takes into account both fiscal and monetary policies. The author's examination of citizen sentiment is based on rational voter theory and the median voter model. He compares the effects of macroeconomic farsightedness versus shortsightedness in voters and contrasts the conservative versus liberal perspectives on macroeconomic policy and performance. The empirical component of the analysis examines the electoral and partisan political business cycle effects upon the U.S. economy, and evidence of idiosyncratic effects during the time frame of 1961-2014 is found. Finally, the author discusses macroeconomic influence on various measures of voter sentiment, such as presidential job approval, and presidential and congressional election outcomes.
N. Galwey W. Introduction to Mixed Modelling. Beyond Regression and Analysis of Variance N. Galwey W. Introduction to Mixed Modelling. Beyond Regression and Analysis of Variance Новинка

N. Galwey W. Introduction to Mixed Modelling. Beyond Regression and Analysis of Variance

8115.26 руб. или Купить в рассрочку!
Mixed modelling is very useful, and easier than you think! Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained. Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts. Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs). It also introduces several important new topics, including the following: Use of the software SAS, in addition to GenStat and R. Meta-analysis and the multiple testing problem. The Bayesian interpretation of mixed models. Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography. Praise for the first edition: “One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models…Each chapter is well-motivated by at least one carefully chosen example…demonstrating the broad applicability of mixed models in many different disciplines…most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic.”—Kerrie Nelson University of South Carolina, in American Statistician, 2007
N. Galwey W. Introduction to Mixed Modelling. Beyond Regression and Analysis of Variance N. Galwey W. Introduction to Mixed Modelling. Beyond Regression and Analysis of Variance Новинка

N. Galwey W. Introduction to Mixed Modelling. Beyond Regression and Analysis of Variance

8257.27 руб. или Купить в рассрочку!
Mixed modelling is very useful, and easier than you think! Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained. Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts. Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs). It also introduces several important new topics, including the following: Use of the software SAS, in addition to GenStat and R. Meta-analysis and the multiple testing problem. The Bayesian interpretation of mixed models. Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography. Praise for the first edition: “One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models…Each chapter is well-motivated by at least one carefully chosen example…demonstrating the broad applicability of mixed models in many different disciplines…most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic.”—Kerrie Nelson University of South Carolina, in American Statistician, 2007
Simon Jackman Bayesian Analysis for the Social Sciences Simon Jackman Bayesian Analysis for the Social Sciences Новинка

Simon Jackman Bayesian Analysis for the Social Sciences

Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Philippe Weber Benefits of Bayesian Network Models Philippe Weber Benefits of Bayesian Network Models Новинка

Philippe Weber Benefits of Bayesian Network Models

8561.67 руб. или Купить в рассрочку!
The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.
Alan Agresti Categorical Data Analysis Alan Agresti Categorical Data Analysis Новинка

Alan Agresti Categorical Data Analysis

11363.22 руб. или Купить в рассрочку!
Praise for the Second Edition «A must-have book for anyone expecting to do research and/or applications in categorical data analysis.» —Statistics in Medicine «It is a total delight reading this book.» —Pharmaceutical Research «If you do any analysis of categorical data, this is an essential desktop reference.» —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Nikolaos Limnios Statistical Models and Methods for Reliability and Survival Analysis Nikolaos Limnios Statistical Models and Methods for Reliability and Survival Analysis Новинка

Nikolaos Limnios Statistical Models and Methods for Reliability and Survival Analysis

13922.16 руб. или Купить в рассрочку!
Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts – Statistical Models and Methods, Statistical Models and Methods in Survival Analysis, and Reliability and Maintenance. The book is intended for researchers interested in statistical methodology and models useful in survival analysis, system reliability and statistical testing for censored and non-censored data.
Harikumar Rajaguru, Sunil Kumar Prabhakar Comprehensive Analysis of Swarm Based Classifiers and Bayesian Based Models for Epilepsy Risk Level Classification from EEG Signals Harikumar Rajaguru, Sunil Kumar Prabhakar Comprehensive Analysis of Swarm Based Classifiers and Bayesian Based Models for Epilepsy Risk Level Classification from EEG Signals Новинка

Harikumar Rajaguru, Sunil Kumar Prabhakar Comprehensive Analysis of Swarm Based Classifiers and Bayesian Based Models for Epilepsy Risk Level Classification from EEG Signals

This project presents the performance analysis of Particle swarm optimization (PSO), hybrid PSO and Bayesian classifier to calculate the epileptic risk level from electroencephalogram (EEG) inputs. PSO is an optimization technique which is initialized with a population of random solutions and searches for optima by updating generations. PSO is initialized with a group of random particles (solutions) and then searches for optima by updating generations. Hybrid PSO differs from ordinary PSO by calculating inertia weight to avoid the local minima problem. Bayesian classifier works on the principle of Bayes' rule in which it is the probability based theorem.The results of PSO, hybrid PSO and Bayesian classifier are calculated and their performance is analyzed using performance index, quality value, cost function and classification rate in calculating the epileptic risk level from EEG.
William Bolstad M. Introduction to Bayesian Statistics William Bolstad M. Introduction to Bayesian Statistics Новинка

William Bolstad M. Introduction to Bayesian Statistics

10422.9 руб. или Купить в рассрочку!
"…this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
I. Gusti Ngurah Agung Panel Data Analysis using EViews I. Gusti Ngurah Agung Panel Data Analysis using EViews Новинка

I. Gusti Ngurah Agung Panel Data Analysis using EViews

10984.45 руб. или Купить в рассрочку!
A comprehensive and accessible guide to panel data analysis using EViews software This book explores the use of EViews software in creating panel data analysis using appropriate empirical models and real datasets. Guidance is given on developing alternative descriptive statistical summaries for evaluation and providing policy analysis based on pool panel data. Various alternative models based on panel data are explored, including univariate general linear models, fixed effect models and causal models, and guidance on the advantages and disadvantages of each one is given. Panel Data Analysis using EViews: Provides step-by-step guidance on how to apply EViews software to panel data analysis using appropriate empirical models and real datasets. Examines a variety of panel data models along with the author’s own empirical findings, demonstrating the advantages and limitations of each model. Presents growth models, time-related effects models, and polynomial models, in addition to the models which are commonly applied for panel data. Includes more than 250 examples divided into three groups of models (stacked, unstacked, and structured panel data), together with notes and comments. Provides guidance on which models not to use in a given scenario, along with advice on viable alternatives. Explores recent new developments in panel data analysis An essential tool for advanced undergraduate or graduate students and applied researchers in finance, econometrics and population studies. Statisticians and data analysts involved with data collected over long time periods will also find this book a useful resource.
Sondipon Adhikari Probabilistic Finite Element Model Updating Using Bayesian Statistics. Applications to Aeronautical and Mechanical Engineering Sondipon Adhikari Probabilistic Finite Element Model Updating Using Bayesian Statistics. Applications to Aeronautical and Mechanical Engineering Новинка

Sondipon Adhikari Probabilistic Finite Element Model Updating Using Bayesian Statistics. Applications to Aeronautical and Mechanical Engineering

8289.72 руб. или Купить в рассрочку!
Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.
Jose Luis Torres Chacon Introduction to Dynamic Macroeconomic General Equilibrium Models Jose Luis Torres Chacon Introduction to Dynamic Macroeconomic General Equilibrium Models Новинка

Jose Luis Torres Chacon Introduction to Dynamic Macroeconomic General Equilibrium Models

This book offers an introductory step-by-step course in Dynamic Stochastic General Equilibrium modelling. Modern macroeconomic analysis is increasingly concerned with the construction, calibration and/or estimation and simulation of Dynamic General Equilibrium (DGE) models. The book is intended for graduate students as an introductory course to DGE modelling and for those economists who would like a hands-on approach to learning the basics of modern dynamic macroeconomic modelling. The book starts with the simplest canonical neoclassical DGE model and then gradually extends the basic framework incorporating a variety of additional features, such as consumption habit formation, investment adjustment cost, investment-specific technological change, taxes, public capital, household production, non-ricardian agents, monopolistic competition, etc. The book includes Dynare codes for the models developed that can be downloaded from the book's homepage.The second edition is identical to the first with the exception of a revised appendix to Chapter 2. The revised appendix can be downloaded free of charge in the accompanying downloads section.
Franco Taroni Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science Franco Taroni Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science Новинка

Franco Taroni Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science

7743.01 руб. или Купить в рассрочку!
"This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation" Dr. Ian Evett, Principal Forensic Services Ltd, London, UK Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. • Includes self-contained introductions to probability and decision theory. • Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. • Features implementation of the methodology with reference to commercial and academically available software. • Presents standard networks and their extensions that can be easily implemented and that can assist in the reader’s own analysis of real cases. • Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. • Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. • Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. • Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Wilfredo Palma Time Series Analysis Wilfredo Palma Time Series Analysis Новинка

Wilfredo Palma Time Series Analysis

10051.36 руб. или Купить в рассрочку!
A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univariate time series by illustrating a number of well-known models such as ARMA and ARIMA. Providing contemporary coverage, the book features several useful and newlydeveloped techniques such as weak and strong dependence, Bayesian methods, non-Gaussian data, local stationarity, missing values and outliers, and threshold models. Time Series Analysis includes practical applications of time series methods throughout, as well as: Real-world examples and exercise sets that allow readers to practice the presented methods and techniques Numerous detailed analyses of computational aspects related to the implementation of methodologies including algorithm efficiency, arithmetic complexity, and process time End-of-chapter proposed problems and bibliographical notes to deepen readers’ knowledge of the presented material Appendices that contain details on fundamental concepts and select solutions of the problems implemented throughout A companion website with additional data fi les and computer codes Time Series Analysis is an excellent textbook for undergraduate and beginning graduate-level courses in time series as well as a supplement for students in advanced statistics, mathematics, economics, finance, engineering, and physics. The book is also a useful reference for researchers and practitioners in time series analysis, econometrics, and finance. Wilfredo Palma, PhD, is Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. He has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics. He is the author of Long-Memory Time Series: Theory and Methods, also published by Wiley.
Alan Agresti Foundations of Linear and Generalized Linear Models Alan Agresti Foundations of Linear and Generalized Linear Models Новинка

Alan Agresti Foundations of Linear and Generalized Linear Models

9306.16 руб. или Купить в рассрочку!
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Ahmed Moustafa A. Computational Models of Brain and Behavior Ahmed Moustafa A. Computational Models of Brain and Behavior Новинка

Ahmed Moustafa A. Computational Models of Brain and Behavior

11167.39 руб. или Купить в рассрочку!
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.
Suresh Ramaiah A Course in Statistics with R Suresh Ramaiah A Course in Statistics with R Новинка

Suresh Ramaiah A Course in Statistics with R

7120.01 руб. или Купить в рассрочку!
Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and the related statistical techniques underlying them through practical applications, and hence helps the reader to achieve a clear understanding of the associated statistical models. Key features: Integrates R basics with statistical concepts Provides graphical presentations inclusive of mathematical expressions Aids understanding of limit theorems of probability with and without the simulation approach Presents detailed algorithmic development of statistical models from scratch Includes practical applications with over 50 data sets
Michael Stumpf Handbook of Statistical Systems Biology Michael Stumpf Handbook of Statistical Systems Biology Новинка

Michael Stumpf Handbook of Statistical Systems Biology

16230.51 руб. или Купить в рассрочку!
Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.
James Candy V. Bayesian Signal Processing. Classical, Modern, and Particle Filtering Methods James Candy V. Bayesian Signal Processing. Classical, Modern, and Particle Filtering Methods Новинка

James Candy V. Bayesian Signal Processing. Classical, Modern, and Particle Filtering Methods

10422.9 руб. или Купить в рассрочку!
Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Отсутствует Advanced Time Series Data Analysis. Forecasting Using EViews Отсутствует Advanced Time Series Data Analysis. Forecasting Using EViews Новинка

Отсутствует Advanced Time Series Data Analysis. Forecasting Using EViews

9999.63 руб. или Купить в рассрочку!
Introduces the latest developments in forecasting in advanced quantitative data analysis This book presents advanced univariate multiple regressions, which can directly be used to forecast their dependent variables, evaluate their in-sample forecast values, and compute forecast values beyond the sample period. Various alternative multiple regressions models are presented based on a single time series, bivariate, and triple time-series, which are developed by taking into account specific growth patterns of each dependent variables, starting with the simplest model up to the most advanced model. Graphs of the observed scores and the forecast evaluation of each of the models are offered to show the worst and the best forecast models among each set of the models of a specific independent variable. Advanced Time Series Data Analysis: Forecasting Using EViews provides readers with a number of modern, advanced forecast models not featured in any other book. They include various interaction models, models with alternative trends (including the models with heterogeneous trends), and complete heterogeneous models for monthly time series, quarterly time series, and annually time series. Each of the models can be applied by all quantitative researchers. Presents models that are all classroom tested Contains real-life data samples Contains over 350 equation specifications of various time series models Contains over 200 illustrative examples with special notes and comments Applicable for time series data of all quantitative studies Advanced Time Series Data Analysis: Forecasting Using EViews will appeal to researchers and practitioners in forecasting models, as well as those studying quantitative data analysis. It is suitable for those wishing to obtain a better knowledge and understanding on forecasting, specifically the uncertainty of forecast values.
Irini Moustaki Latent Variable Models and Factor Analysis. A Unified Approach Irini Moustaki Latent Variable Models and Factor Analysis. A Unified Approach Новинка

Irini Moustaki Latent Variable Models and Factor Analysis. A Unified Approach

6924.35 руб. или Купить в рассрочку!
Latent Variable Models and Factor Analysis provides a comprehensive and unified approach to factor analysis and latent variable modeling from a statistical perspective. This book presents a general framework to enable the derivation of the commonly used models, along with updated numerical examples. Nature and interpretation of a latent variable is also introduced along with related techniques for investigating dependency. This book: Provides a unified approach showing how such apparently diverse methods as Latent Class Analysis and Factor Analysis are actually members of the same family. Presents new material on ordered manifest variables, MCMC methods, non-linear models as well as a new chapter on related techniques for investigating dependency. Includes new sections on structural equation models (SEM) and Markov Chain Monte Carlo methods for parameter estimation, along with new illustrative examples. Looks at recent developments on goodness-of-fit test statistics and on non-linear models and models with mixed latent variables, both categorical and continuous. No prior acquaintance with latent variable modelling is pre-supposed but a broad understanding of statistical theory will make it easier to see the approach in its proper perspective. Applied statisticians, psychometricians, medical statisticians, biostatisticians, economists and social science researchers will benefit from this book.
Gordon Willmot E. Student Solutions Manual to Accompany Loss Models. From Data to Decisions Gordon Willmot E. Student Solutions Manual to Accompany Loss Models. From Data to Decisions Новинка

Gordon Willmot E. Student Solutions Manual to Accompany Loss Models. From Data to Decisions

3636.23 руб. или Купить в рассрочку!
Loss Models: From Data to Decisions, Fifth Edition continues to supply actuaries with a practical approach to the key concepts and techniques needed on the job. With updated material and extensive examples, the book successfully provides the essential methods for using available data to construct models for the frequency and severity of future adverse outcomes. The book continues to equip readers with the tools needed for the construction and analysis of mathematical models that describe the process by which funds flow into and out of an insurance system. Focusing on the loss process, the authors explore key quantitative techniques including random variables, basic distributional quantities, and the recursive method, and discuss techniques for classifying and creating distributions. Parametric, non-parametric, and Bayesian estimation methods are thoroughly covered along with advice for choosing an appropriate model. Throughout the book, numerous examples showcase the real-world applications of the presented concepts, with an emphasis on calculations and spreadsheet implementation. Loss Models: From Data to Decisions, Fifth Edition is an indispensable resource for students and aspiring actuaries who are preparing to take the SOA and CAS examinations. The book is also a valuable reference for professional actuaries, actuarial students, and anyone who works with loss and risk models.
Song Xin-Yuan Basic and Advanced Bayesian Structural Equation Modeling. With Applications in the Medical and Behavioral Sciences Song Xin-Yuan Basic and Advanced Bayesian Structural Equation Modeling. With Applications in the Medical and Behavioral Sciences Новинка

Song Xin-Yuan Basic and Advanced Bayesian Structural Equation Modeling. With Applications in the Medical and Behavioral Sciences

8863.31 руб. или Купить в рассрочку!
This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduced, whilst SEM with a nonparametric structural equation to assess unspecified functional relationships among latent variables are also explored. Statistical methodologies are developed using the Bayesian approach giving reliable results for small samples and allowing the use of prior information leading to better statistical results. Estimates of the parameters and model comparison statistics are obtained via powerful Markov Chain Monte Carlo methods in statistical computing. Introduces the Bayesian approach to SEMs, including discussion on the selection of prior distributions, and data augmentation. Demonstrates how to utilize the recent powerful tools in statistical computing including, but not limited to, the Gibbs sampler, the Metropolis-Hasting algorithm, and path sampling for producing various statistical results such as Bayesian estimates and Bayesian model comparison statistics in the analysis of basic and advanced SEMs. Discusses the Bayes factor, Deviance Information Criterion (DIC), and $L_\nu$-measure for Bayesian model comparison. Introduces a number of important generalizations of SEMs, including multilevel and mixture SEMs, latent curve models and longitudinal SEMs, semiparametric SEMs and those with various types of discrete data, and nonparametric structural equations. Illustrates how to use the freely available software WinBUGS to produce the results. Provides numerous real examples for illustrating the theoretical concepts and computational procedures that are presented throughout the book. Researchers and advanced level students in statistics, biostatistics, public health, business, education, psychology and social science will benefit from this book.
Saeed Vaseghi V. Advanced Digital Signal Processing and Noise Reduction Saeed Vaseghi V. Advanced Digital Signal Processing and Noise Reduction Новинка

Saeed Vaseghi V. Advanced Digital Signal Processing and Noise Reduction

12120.77 руб. или Купить в рассрочку!
Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates and extends the chapters in the previous edition and includes two new chapters on MIMO systems, Correlation and Eigen analysis and independent component analysis. The wide range of topics covered in this book include Wiener filters, echo cancellation, channel equalisation, spectral estimation, detection and removal of impulsive and transient noise, interpolation of missing data segments, speech enhancement and noise/interference in mobile communication environments. This book provides a coherent and structured presentation of the theory and applications of statistical signal processing and noise reduction methods. Two new chapters on MIMO systems, correlation and Eigen analysis and independent component analysis Comprehensive coverage of advanced digital signal processing and noise reduction methods for communication and information processing systems Examples and applications in signal and information extraction from noisy data Comprehensive but accessible coverage of signal processing theory including probability models, Bayesian inference, hidden Markov models, adaptive filters and Linear prediction models Advanced Digital Signal Processing and Noise Reduction is an invaluable text for postgraduates, senior undergraduates and researchers in the fields of digital signal processing, telecommunications and statistical data analysis. It will also be of interest to professional engineers in telecommunications and audio and signal processing industries and network planners and implementers in mobile and wireless communication communities.
U.S. Department of Commerce, Charles McLean, Y. Tina Lee Modeling and Simulation of Healthcare Systems for Homeland Security Applications U.S. Department of Commerce, Charles McLean, Y. Tina Lee Modeling and Simulation of Healthcare Systems for Homeland Security Applications Новинка

U.S. Department of Commerce, Charles McLean, Y. Tina Lee Modeling and Simulation of Healthcare Systems for Homeland Security Applications

Healthcare System models and simulations may be used to support analysis, planning, and training needs for the healthcare institutions, epidemics, and other healthcare-related emergencies. Simulation models may be used to understand healthcare systems, interdependencies with other systems, their vulnerabilities, and the impact of emergency incidents on the population and healthcare community. These models and simulations will also be used to support training exercises, performance measurement, conceptual design, impact evaluation, response planning, analysis, acquisition, conceptualizing and evaluating new systems, vulnerability analysis, economic impact, and determining interdependencies between healthcare and other infrastructure systems. The goal of this document is to capture the current knowledge and information resources that can serve as a common baseline for researchers and developers of models and simulations of healthcare systems for homeland security applications.
William Bolstad M. Understanding Computational Bayesian Statistics William Bolstad M. Understanding Computational Bayesian Statistics Новинка

William Bolstad M. Understanding Computational Bayesian Statistics

11135.96 руб. или Купить в рассрочку!
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.
Jill Fiedler-Kelly Introduction to Population Pharmacokinetic / Pharmacodynamic Analysis with Nonlinear Mixed Effects Models Jill Fiedler-Kelly Introduction to Population Pharmacokinetic / Pharmacodynamic Analysis with Nonlinear Mixed Effects Models Новинка

Jill Fiedler-Kelly Introduction to Population Pharmacokinetic / Pharmacodynamic Analysis with Nonlinear Mixed Effects Models

This book provides a user-friendly, hands-on introduction to the Nonlinear Mixed Effects Modeling (NONMEM) system, the most powerful tool for pharmacokinetic / pharmacodynamic analysis. • Introduces requisite background to using Nonlinear Mixed Effects Modeling (NONMEM), covering data requirements, model building and evaluation, and quality control aspects • Provides examples of nonlinear modeling concepts and estimation basics with discussion on the model building process and applications of empirical Bayesian estimates in the drug development environment • Includes detailed chapters on data set structure, developing control streams for modeling and simulation, model applications, interpretation of NONMEM output and results, and quality control • Has datasets, programming code, and practice exercises with solutions, available on a supplementary website
Frederic Magoules Data Mining and Machine Learning in Building Energy Analysis. Towards High Performance Computing Frederic Magoules Data Mining and Machine Learning in Building Energy Analysis. Towards High Performance Computing Новинка

Frederic Magoules Data Mining and Machine Learning in Building Energy Analysis. Towards High Performance Computing

8189.42 руб. или Купить в рассрочку!
Focusing on up-to-date artificial intelligence models to solve building energy problems, Artificial Intelligence for Building Energy Analysis reviews recently developed models for solving these issues, including detailed and simplified engineering methods, statistical methods, and artificial intelligence methods. The text also simulates energy consumption profiles for single and multiple buildings. Based on these datasets, Support Vector Machine (SVM) models are trained and tested to do the prediction. Suitable for novice, intermediate, and advanced readers, this is a vital resource for building designers, engineers, and students.
Statistical testing with R Statistical testing with R Новинка

Statistical testing with R

Features Worked examples from the behavioral and social sciences Clearly written, without mathematical formulae Well-structured, for beginners and intermediate readers Assumes no knowledge of R or programming ('coding') Comprehensive chapter on categorical analysis - not just 'Chi squared' Effect sizes and confidence intervals Clear explanation of factor analysis Covers MANOVA, cluster analysis, logistic regression, survival analysis and partial correlations Introduces Bayesian statistics Reproduces a well-received short chapter on making presentations Data sets and case studies on the website
Carlo Vercellis Business Intelligence. Data Mining and Optimization for Decision Making Carlo Vercellis Business Intelligence. Data Mining and Optimization for Decision Making Новинка

Carlo Vercellis Business Intelligence. Data Mining and Optimization for Decision Making

14014.64 руб. или Купить в рассрочку!
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Alex Karagrigoriou Applied Reliability Engineering and Risk Analysis. Probabilistic Models and Statistical Inference Alex Karagrigoriou Applied Reliability Engineering and Risk Analysis. Probabilistic Models and Statistical Inference Новинка

Alex Karagrigoriou Applied Reliability Engineering and Risk Analysis. Probabilistic Models and Statistical Inference

13549.91 руб. или Купить в рассрочку!
This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist
Malekmohammadi Najmeh, Farid Mahboubeh The Application of Data Envelopment Analysis to Queuing System Malekmohammadi Najmeh, Farid Mahboubeh The Application of Data Envelopment Analysis to Queuing System Новинка

Malekmohammadi Najmeh, Farid Mahboubeh The Application of Data Envelopment Analysis to Queuing System

In this work, the relations between data envelopment analysis and queuing models are proposed. Via our new approach, some drawbacks of the previously methods for large scale computer networks are rectified. Meanwhile the proposed method is also defined for fuzzy queuing models. The major goal of our new aspect is the relation between DEA and queuing system which has been rarely noticed by researchers. Also, we want to show that how DEA can increase the overall efficiency in any system. Our main aim is the capability and the usage of DEA even in queuing system. The objectives of the work are to: Defining a technique for evaluating the operational efficiency of large-scale computer networks via data envelopment analysis and queuing models. Determining an approach for evaluation of efficiency in fuzzy queuing models with publicity and renouncement.
Franco Taroni Data Analysis in Forensic Science. A Bayesian Decision Perspective Franco Taroni Data Analysis in Forensic Science. A Bayesian Decision Perspective Новинка

Franco Taroni Data Analysis in Forensic Science. A Bayesian Decision Perspective

8185.18 руб. или Купить в рассрочку!
This is the first text to examine the use of statistical methods in forensic science and bayesian statistics in combination. The book is split into two parts: Part One concentrates on the philosophies of statistical inference. Chapter One examines the differences between the frequentist, the likelihood and the Bayesian perspectives, before Chapter Two explores the Bayesian decision-theoretic perspective further, and looks at the benefits it carries. Part Two then introduces the reader to the practical aspects involved: the application, interpretation, summary and presentation of data analyses are all examined from a Bayesian decision-theoretic perspective. A wide range of statistical methods, essential in the analysis of forensic scientific data is explored. These include the comparison of allele proportions in populations, the comparison of means, the choice of sampling size, and the discrimination of items of evidence of unknown origin into predefined populations. Throughout this practical appraisal there are a wide variety of examples taken from the routine work of forensic scientists. These applications are demonstrated in the ever-more popular R language. The reader is taken through these applied examples in a step-by-step approach, discussing the methods at each stage.
Yang Liu Ranking Analysis for Expectation of Binary Outcomes. A Bayesian Approach Yang Liu Ranking Analysis for Expectation of Binary Outcomes. A Bayesian Approach Новинка

Yang Liu Ranking Analysis for Expectation of Binary Outcomes. A Bayesian Approach

Technical Report from the year 2017 in the subject Economics - Statistics and Methods, , language: English, abstract: The estimation and grading of customer Probability of Default (PD) using a firm-wide master scale for internal portfolios is a well established procedure in many financial institutions. However, there are often discussions within the institutions about the comparison between the grade PDs, the portfolio average PD calculated across grades and the observed Default Rate (DR). The Bayesian estimator for the grade PD based on different prior distribution assumption is often referred to as an alternative over the simple default rate. In this paper, we apply and compare the approaches to derive the posterior distribution of grade PDs that is closely linked to the portfolio performance assumptions made according to the Master Scale. We then detail the numerical analysis of both informed and uninformed Bayesian estimators for the Grade PDs with simulated single and multi-period data sets. We compare the results in term of prior and posterior Density-in-Range (DiR) and Direction-of-Movement (DoM) for each Grade. With data analysis and preference of criteria, the approach and metrics can be used for both model development and validation, or other risk-awareness reporting and information update exercises to help understand the difference between expectation and observed data. More importantly, this approach provides a methodology to quantify such differences according to...
New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities As Field Effects New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities As Field Effects Новинка

New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities As Field Effects

This book contributes substantively to the current state of art of macroeconomic modeling by providing a method for modeling large collections of possibly heterogeneous agents subject to nonpairwise externality called field effects, that is, feedback of aggregate effects on individual agents or agents using state-dependent strategies. By adopting a level of microeconomic description that keeps track of compositions of fractions of agents by types or strategies, time evolution of the microeconomic states is described by (backward) Chapman-Kolmogorov equations. Macroeconomic dynamics naturally arise from these equations by expansion of the solutions in some power series of the number of participants. Specification of the microeconomic transition rates thus leads to macroeconomic dynamic models. This approach provides a consistent way for dealing with multiple equilibria of macroeconomic dynamics by ergodic decomposition and associated calculations of mean first passage times, and stationary probabilities of equilibria provide further useful information on macroeconomic behavior. This book ends with a set of elaborations, sketches of further topics of research, and a collection of supporting materials in the Appendix.
Robert Weigand A. Applied Equity Analysis and Portfolio Management. Tools to Analyze and Manage Your Stock Portfolio Robert Weigand A. Applied Equity Analysis and Portfolio Management. Tools to Analyze and Manage Your Stock Portfolio Новинка

Robert Weigand A. Applied Equity Analysis and Portfolio Management. Tools to Analyze and Manage Your Stock Portfolio

8522.42 руб. или Купить в рассрочку!
A «hands-on» guide to applied equity analysis and portfolio management From asset allocation to modeling the intrinsic value of a stock, Applied Equity Analysis and Portfolio Management + Online Video Course offers readers a solid foundation in the practice of fundamental analysis using the same tools and techniques as professional investors. Filled with real-world illustrations and hands-on applications, Professor Weigand's learning system takes a rigorous, empirical approach to topics such as analyzing the macro-finance environment, sector rotation, financial analysis and valuation, assessing a company's competitive position, and reporting the performance of a stock portfolio. Unlike typical books on this subject—which feature chapters to read and exercises to complete—this resource allows readers to actively participate in the learning experience by completing writing exercises and manipulating interactive spreadsheets that illustrate the principles being taught. The learning system also features instructional videos that demonstrate how to use the spreadsheet models and excerpts from the author's blog, which are used to depict additional examples of the analysis process. Along the way, it skillfully outlines an effective approach to creating and interpreting outputs typically associated with a top-down money management shop – including a macroeconomic forecasting newsletter, detailed stock research reports, and a portfolio performance attribution analysis. Covers topics including active and passive money management, fundamental analysis and portfolio attribution analysis Companion streaming videos show how to use free online data to create yourown analyses of key economic indicators, individual stocks, and stock portfolios A valuable resource for universities who have applied equity analysis and portfolio management courses Practical and up-to-date, the book is an excellent resource for those with a need for practical investment expertise.
Xavier Descombes Stochastic Geometry for Image Analysis Xavier Descombes Stochastic Geometry for Image Analysis Новинка

Xavier Descombes Stochastic Geometry for Image Analysis

12499.54 руб. или Купить в рассрочку!
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Mounir Mesbah Rasch Models in Health Mounir Mesbah Rasch Models in Health Новинка

Mounir Mesbah Rasch Models in Health

12284.84 руб. или Купить в рассрочку!
The family of statistical models known as Rasch models started with a simple model for responses to questions in educational tests presented together with a number of related models that the Danish mathematician Georg Rasch referred to as models for measurement. Since the beginning of the 1950s the use of Rasch models has grown and has spread from education to the measurement of health status. This book contains a comprehensive overview of the statistical theory of Rasch models. Part 1 contains the probabilistic definition of Rasch models, Part 2 describes the estimation of item and person parameters, Part 3 concerns the assessment of the data-model fit of Rasch models, Part 4 contains applications of Rasch models, Part 5 discusses how to develop health-related instruments for Rasch models, and Part 6 describes how to perform Rasch analysis and document results.
Statistical testing with jamovi and JASP open source software Criminology Statistical testing with jamovi and JASP open source software Criminology Новинка

Statistical testing with jamovi and JASP open source software Criminology

Features Worked examples from Criminology Clearly written, without mathematical formulae Well-structured, for beginners and intermediate readers Comprehensive chapter on categorical analysis - not just 'Chi squared' Effect sizes and confidence intervals Clear explanation of factor analysis Covers MANOVA, logistic regression and survival analysis Introduces Bayesian statistics Reproduces a well-received short chapter on making presentations Data sets and case studies on the website
Owen Woodberry, Steven Mascaro Programming Bayesian Network Solutions with Netica Owen Woodberry, Steven Mascaro Programming Bayesian Network Solutions with Netica Новинка

Owen Woodberry, Steven Mascaro Programming Bayesian Network Solutions with Netica

Programming Bayesian Network Solutions with Netica provides a gentle but comprehensive introduction to programming Bayesian networks in Java with the Netica API. The book assumes minimal programming experience and a basic understanding of Bayesian networks and is thus suitable for most people interested in learning how to create Bayesian network-based software, all the way from small task-specific scripts up to large scale projects. For further enquiries, visit: bayesian-intelligence.com/programming-bns/.
Daniel Chateigner Combined Analysis Daniel Chateigner Combined Analysis Новинка

Daniel Chateigner Combined Analysis

17878.13 руб. или Купить в рассрочку!
This book introduces and details the key facets of Combined Analysis – an x-ray and/or neutron scattering methodology which combines structural, textural, stress, microstructural, phase, layer, or other relevant variable or property analyses in a single approach. The text starts with basic theories related to diffraction by polycrystals and some of the most common combined analysis instrumental set-ups are detailed. Also discussed are microstructures of powder diffraction profiles; quantitative phase analysis from the Rietveld analysis; residual stress analysis for isotropic and anisotropic materials; specular x-ray reflectivity, and the various associated models.
Mike Cheung W.-L. Meta-Analysis. A Structural Equation Modeling Approach Mike Cheung W.-L. Meta-Analysis. A Structural Equation Modeling Approach Новинка

Mike Cheung W.-L. Meta-Analysis. A Structural Equation Modeling Approach

4577.15 руб. или Купить в рассрочку!
Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the importance of SEM and meta-analysis in answering research questions. Key ideas in meta-analysis and SEM are briefly reviewed, and various meta-analytic models are then introduced and linked to the SEM framework. Fixed-, random-, and mixed-effects models in univariate and multivariate meta-analyses, three-level meta-analysis, and meta-analytic structural equation modeling, are introduced. Advanced topics, such as using restricted maximum likelihood estimation method and handling missing covariates, are also covered. Readers will learn a single framework to apply both meta-analysis and SEM. Examples in R and in Mplus are included. This book will be a valuable resource for statistical and academic researchers and graduate students carrying out meta-analyses, and will also be useful to researchers and statisticians using SEM in biostatistics. Basic knowledge of either SEM or meta-analysis will be helpful in understanding the materials in this book.
Brani Vidakovic Engineering Biostatistics. An Introduction using MATLAB and WinBUGS Brani Vidakovic Engineering Biostatistics. An Introduction using MATLAB and WinBUGS Новинка

Brani Vidakovic Engineering Biostatistics. An Introduction using MATLAB and WinBUGS

8933.91 руб. или Купить в рассрочку!
Provides a one-stop resource for engineers learning biostatistics using MATLAB® and WinBUGS Through its scope and depth of coverage, this book addresses the needs of the vibrant and rapidly growing bio-oriented engineering fields while implementing software packages that are familiar to engineers. The book is heavily oriented to computation and hands-on approaches so readers understand each step of the programming. Another dimension of this book is in parallel coverage of both Bayesian and frequentist approaches to statistical inference. It avoids taking sides on the classical vs. Bayesian paradigms, and many examples in this book are solved using both methods. The results are then compared and commented upon. Readers have the choice of MATLAB® for classical data analysis and WinBUGS/OpenBUGS for Bayesian data analysis. Every chapter starts with a box highlighting what is covered in that chapter and ends with exercises, a list of software scripts, datasets, and references. Engineering Biostatistics: An Introduction using MATLAB® and WinBUGS also includes: parallel coverage of classical and Bayesian approaches, where appropriate substantial coverage of Bayesian approaches to statistical inference material that has been classroom-tested in an introductory statistics course in bioengineering over several years exercises at the end of each chapter and an accompanying website with full solutions and hints to some exercises, as well as additional materials and examples Engineering Biostatistics: An Introduction using MATLAB® and WinBUGS can serve as a textbook for introductory-to-intermediate applied statistics courses, as well as a useful reference for engineers interested in biostatistical approaches.
Wang Jichuan Structural Equation Modeling. Applications Using Mplus Wang Jichuan Structural Equation Modeling. Applications Using Mplus Новинка

Wang Jichuan Structural Equation Modeling. Applications Using Mplus

8863.31 руб. или Купить в рассрочку!
A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a flexible tool to analyze their data with an easy-to-use interface and graphical displays of data and analysis results. Key features: Presents a useful reference guide for applications of SEM whilst systematically demonstrating various advanced SEM models, such as multi-group and mixture models using Mplus. Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Provides step-by-step instructions of model specification and estimation, as well as detail interpretation of Mplus results. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this book, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book.
Xian Liu Survival Analysis. Models and Applications Xian Liu Survival Analysis. Models and Applications Новинка

Xian Liu Survival Analysis. Models and Applications

8260.06 руб. или Купить в рассрочку!
Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Xian Liu Survival Analysis. Models and Applications Xian Liu Survival Analysis. Models and Applications Новинка

Xian Liu Survival Analysis. Models and Applications

Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
William Wei W.S. Multivariate Time Series Analysis and Applications William Wei W.S. Multivariate Time Series Analysis and Applications Новинка

William Wei W.S. Multivariate Time Series Analysis and Applications

9090.58 руб. или Купить в рассрочку!
An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.

кешбака
Страницы:


Presents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of statistical modelsof dependence, and features a focus on copulas for risk management Introduction to Bayesian Estimation and Copula Models of Dependence emphasizes the applications of Bayesian analysis to copula modeling and equips readers with the tools needed to implement the procedures of Bayesian estimation in copula models of dependence. This book is structured in two parts: the first four chapters serve as a general introduction to Bayesian statistics with a clear emphasis on parametric estimation and the following four chapters stress statistical models of dependence with a focus of copulas. A review of the main concepts is discussed along with the basics of Bayesian statistics including prior information and experimental data, prior and posterior distributions, with an emphasis on Bayesian parametric estimation. The basic mathematical background of both Markov chains and Monte Carlo integration and simulation is also provided. The authors discuss statistical models of dependence with a focus on copulas and present a brief survey of pre-copula dependence models. The main definitions and notations of copula models are summarized followed by discussions of real-world cases that address particular risk management problems. In addition, this book includes: • Practical examples of copulas in use including within the Basel Accord II documents that regulate the world banking system as well as examples of Bayesian methods within current FDA recommendations • Step-by-step procedures of multivariate data analysis and copula modeling, allowing readers to gain insight for their own applied research and studies • Separate reference lists within each chapter and end-of-the-chapter exercises within Chapters 2 through 8 • A companion website containing appendices: data files and demo files in Microsoft® Office Excel®, basic code in R, and selected exercise solutions Introduction to Bayesian Estimation and Copula Models of Dependence is a reference and resource for statisticians who need to learn formal Bayesian analysis as well as professionals within analytical and risk management departments of banks and insurance companies who are involved in quantitative analysis and forecasting. This book can also be used as a textbook for upper-undergraduate and graduate-level courses in Bayesian statistics and analysis. ARKADY SHEMYAKIN, PhD, is Professor in the Department of Mathematics and Director of the Statistics Program at the University of St. Thomas. A member of the American Statistical Association and the International Society for Bayesian Analysis, Dr. Shemyakin's research interests include informationtheory, Bayesian methods of parametric estimation, and copula models in actuarial mathematics, finance, and engineering. ALEXANDER KNIAZEV, PhD, is Associate Professor and Head of the Department of Mathematics at Astrakhan State University in Russia. Dr. Kniazev's research interests include representation theory of Lie algebras and finite groups, mathematical statistics, econometrics, and financial mathematics.
Продажа bayesian models and macroeconomic analysis лучших цены всего мира
Посредством этого сайта магазина - каталога товаров мы очень легко осуществляем продажу bayesian models and macroeconomic analysis у одного из интернет-магазинов проверенных фирм. Определитесь с вашими предпочтениями один интернет-магазин, с лучшей ценой продукта. Прочитав рекомендации по продаже bayesian models and macroeconomic analysis легко охарактеризовать производителя как превосходную и доступную фирму.