Новинка

7757.65 руб. или Купить в рассрочку!

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
Новинка

9500.64 руб. или Купить в рассрочку!

A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Новинка

3036.6 руб. или Купить в рассрочку!

Statistics Analysis of Geographical Data: An Introduction provides a comprehensive and accessible introduction to the theory and practice of statistical analysis in geography. It covers a wide range of topics including graphical and numerical description of datasets, probability, calculation of confidence intervals, hypothesis testing, collection and analysis of data using analysis of variance and linear regression. Taking a clear and logical approach, this book examines real problems with real data from the geographical literature in order to illustrate the important role that statistics play in geographical investigations. Presented in a clear and accessible manner the book includes recent, relevant examples, designed to enhance the reader’s understanding.
Новинка

8740.59 руб. или Купить в рассрочку!

A comprehensive introduction to statistical methods for data mining and knowledge discovery. Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced. Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others. Statistical Data Analytics: Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques. Provides informative, technical details for the highlighted methods. Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book. Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas. This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.
Новинка

2276.55 руб. или Купить в рассрочку!

Solutions Manual to accompany Fundamentals of Matrix Analysis with Applications – an accessible and clear introduction to linear algebra with a focus on matrices and engineering applications
Новинка

8284.84 руб. или Купить в рассрочку!

Modeling and Analysis of Compositional Data presents a practical and comprehensive introduction to the analysis of compositional data along with numerous examples to illustrate both theory and application of each method. Based upon short courses delivered by the authors, it provides a complete and current compendium of fundamental to advanced methodologies along with exercises at the end of each chapter to improve understanding, as well as data and a solutions manual which is available on an accompanying website. Complementing Pawlowsky-Glahn’s earlier collective text that provides an overview of the state-of-the-art in this field, Modeling and Analysis of Compositional Data fills a gap in the literature for a much-needed manual for teaching, self learning or consulting.
Новинка

10245.22 руб. или Купить в рассрочку!

An easily accessible introduction to log-linear modeling for non-statisticians Highlighting advances that have lent to the topic's distinct, coherent methodology over the past decade, Log-Linear Modeling: Concepts, Interpretation, and Application provides an essential, introductory treatment of the subject, featuring many new and advanced log-linear methods, models, and applications. The book begins with basic coverage of categorical data, and goes on to describe the basics of hierarchical log-linear models as well as decomposing effects in cross-classifications and goodness-of-fit tests. Additional topics include: The generalized linear model (GLM) along with popular methods of coding such as effect coding and dummy coding Parameter interpretation and how to ensure that the parameters reflect the hypotheses being studied Symmetry, rater agreement, homogeneity of association, logistic regression, and reduced designs models Throughout the book, real-world data illustrate the application of models and understanding of the related results. In addition, each chapter utilizes R, SYSTAT®, and §¤EM software, providing readers with an understanding of these programs in the context of hierarchical log-linear modeling. Log-Linear Modeling is an excellent book for courses on categorical data analysis at the upper-undergraduate and graduate levels. It also serves as an excellent reference for applied researchers in virtually any area of study, from medicine and statistics to the social sciences, who analyze empirical data in their everyday work.
Новинка

8360.56 руб. или Купить в рассрочку!

A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various modern statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference methods and the field of diagnostic medicine. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into traditional techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book’s subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using the SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies in the field of biostatistics to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.
Новинка

8611.42 руб. или Купить в рассрочку!

Time Series Analysis in Meteorology and Climatology provides an accessible overview of this notoriously difficult subject. Clearly structured throughout, the authors develop sufficient theoretical foundation to understand the basis for applying various analytical methods to a time series and show clearly how to interpret the results. Taking a unique approach to the subject, the authors use a combination of theory and application to real data sets to enhance student understanding throughout the book. This book is written for those students that have a data set in the form of a time series and are confronted with the problem of how to analyse this data. Each chapter covers the various methods that can be used to carry out this analysis with coverage of the necessary theory and its application. In the theoretical section topics covered include; the mathematical origin of spectrum windows, leakage of variance and understanding spectrum windows. The applications section includes real data sets for students to analyse. Scalar variables are used for ease of understanding for example air temperatures, wind speed and precipitation. Students are encouraged to write their own computer programmes and data sets are provided to enable them to recognize quickly whether their programme is working correctly- one data set is provided with artificial data and the other with real data where the students are required to physically interpret the results of their periodgram analysis. Based on the acclaimed and long standing course at the University of Oklahoma and part of the RMetS Advancing Weather and Climate Science Series, this book is distinct in its approach to the subject matter in that it is written specifically for readers in meteorology and climatology and uses a mix of theory and application to real data sets.
Новинка

8969.18 руб. или Купить в рассрочку!

A comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout is on the use of bootstrap methods as an exploratory tool, including its value in variable selection and other modeling environments. The authors begin with a description of bootstrap methods and its relationship to other resampling methods, along with an overview of the wide variety of applications of the approach. Subsequent chapters offer coverage of improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems, including pharmaceutical, genomics, and economics. To inform readers on the limitations of the method, the book also exhibits counterexamples to the consistency of bootstrap methods. An introduction to R programming provides the needed preparation to work with the numerous exercises and applications presented throughout the book. A related website houses the book's R subroutines, and an extensive listing of references provides resources for further study. Discussing the topic at a remarkably practical and accessible level, An Introduction to Bootstrap Methods with Applications to R is an excellent book for introductory courses on bootstrap and resampling methods at the upper-undergraduate and graduate levels. It also serves as an insightful reference for practitioners working with data in engineering, medicine, and the social sciences who would like to acquire a basic understanding of bootstrap methods.
Новинка

4940.33 руб. или Купить в рассрочку!

A research-based foundational overview of contemporary adult education Foundations of Adult and Continuing Education distills decades of scholarship in the field to provide students and practitioners with an up-to-date practical resource. Grounded in research and focused on the unique needs of adult learners, this book provides a foundational overview of adult education, and an introduction to the organizations and practices developed to support adult learning in a variety of contexts. The discussion also includes select understandings of international adult education, policy, and methods alongside theoretical frameworks, contemporary and historical contexts, and the guiding principles of adult education today. Coverage of emerging issues includes the aging society, social justice, and more, with expert insight from leading authorities in the field. Many adult educators begin practice through the context of their own experiences in the field. This book provides the broader research, theory, and practice needed for a deeper understanding of adult education and its place in society. Learn the key philosophical and theoretical frameworks of adult education Survey the landscape of the field through contemporary and historical foundations Examine key guiding understandings and practices targeted to adult learners Delve into newer concerns including technology, globalization, and more Foundations of Adult and Continuing Education provides an expertly-led overview of the field, and an essential introduction to real-world practice.
Новинка

4936.73 руб. или Купить в рассрочку!

A step-by-step introduction to using SAS® statistical software as a foundational approach to data analysis and interpretation Presenting a straightforward introduction from the ground up, SAS® Essentials: Mastering SAS for Data Analytics, Second Edition illustrates SAS using hands-on learning techniques and numerous real-world examples. Keeping different experience levels in mind, the highly-qualified author team has developed the book over 20 years of teaching introductory SAS courses. Divided into two sections, the first part of the book provides an introduction to data manipulation, statistical techniques, and the SAS programming language. The second section is designed to introduce users to statistical analysis using SAS Procedures. Featuring self-contained chapters to enhance the learning process, the Second Edition also includes: Programming approaches for the most up-to-date version of the SAS platform including information on how to use the SAS University Edition Discussions to illustrate the concepts and highlight key fundamental computational skills that are utilized by business, government, and organizations alike New chapters on reporting results in tables and factor analysis Additional information on the DATA step for data management with an emphasis on importing data from other sources, combining data sets, and data cleaning Updated ANOVA and regression examples as well as other data analysis techniques A companion website with the discussed data sets, additional code, and related PowerPoint® slides SAS Essentials: Mastering SAS for Data Analytics, Second Edition is an ideal textbook for upper-undergraduate and graduate-level courses in statistics, data analytics, applied SAS programming, and statistical computer applications as well as an excellent supplement for statistical methodology courses. The book is an appropriate reference for researchers and academicians who require a basic introduction to SAS for statistical analysis and for preparation for the Basic SAS Certification Exam.
Новинка

8284.84 руб. или Купить в рассрочку!

This book provides an introduction to spatial analyses concerning disaggregated (or micro) spatial data. Particular emphasis is put on spatial data compilation and the structuring of the connections between the observations. Descriptive analysis methods of spatial data are presented in order to identify and measure the spatial, global and local dependency. The authors then focus on autoregressive spatial models, to control the problem of spatial dependency between the residues of a basic linear statistical model, thereby contravening one of the basic hypotheses of the ordinary least squares approach. This book is a popularized reference for students looking to work with spatialized data, but who do not have the advanced statistical theoretical basics.
Новинка

6836.85 руб. или Купить в рассрочку!

Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University.
Новинка

10108.53 руб. или Купить в рассрочку!

An invaluable tool in Bioinformatics, this unique volume provides both theoretical and experimental results, and describes basic principles of computational intelligence and pattern analysis while deepening the reader's understanding of the ways in which these principles can be used for analyzing biological data in an efficient manner. This book synthesizes current research in the integration of computational intelligence and pattern analysis techniques, either individually or in a hybridized manner. The purpose is to analyze biological data and enable extraction of more meaningful information and insight from it. Biological data for analysis include sequence data, secondary and tertiary structure data, and microarray data. These data types are complex and advanced methods are required, including the use of domain-specific knowledge for reducing search space, dealing with uncertainty, partial truth and imprecision, efficient linear and/or sub-linear scalability, incremental approaches to knowledge discovery, and increased level and intelligence of interactivity with human experts and decision makers Chapters authored by leading researchers in CI in biology informatics. Covers highly relevant topics: rational drug design; analysis of microRNAs and their involvement in human diseases. Supplementary material included: program code and relevant data sets correspond to chapters.
Новинка

14358.83 руб. или Купить в рассрочку!

A timely update of the classic book on the theory and application of random data analysis First published in 1971, Random Data served as an authoritative book on the analysis of experimental physical data for engineering and scientific applications. This Fourth Edition features coverage of new developments in random data management and analysis procedures that are applicable to a broad range of applied fields, from the aerospace and automotive industries to oceanographic and biomedical research. This new edition continues to maintain a balance of classic theory and novel techniques. The authors expand on the treatment of random data analysis theory, including derivations of key relationships in probability and random process theory. The book remains unique in its practical treatment of nonstationary data analysis and nonlinear system analysis, presenting the latest techniques on modern data acquisition, storage, conversion, and qualification of random data prior to its digital analysis. The Fourth Edition also includes: A new chapter on frequency domain techniques to model and identify nonlinear systems from measured input/output random data New material on the analysis of multiple-input/single-output linear models The latest recommended methods for data acquisition and processing of random data Important mathematical formulas to design experiments and evaluate results of random data analysis and measurement procedures Answers to the problem in each chapter Comprehensive and self-contained, Random Data, Fourth Edition is an indispensible book for courses on random data analysis theory and applications at the upper-undergraduate and graduate level. It is also an insightful reference for engineers and scientists who use statistical methods to investigate and solve problems with dynamic data.
Новинка

9500.64 руб. или Купить в рассрочку!

A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features: Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.
Новинка

10184.97 руб. или Купить в рассрочку!

Praise for the Third Edition “. . . an easy-to read introduction to survival analysis which covers the major concepts and techniques of the subject.” —Statistics in Medical Research Updated and expanded to reflect the latest developments, Statistical Methods for Survival Data Analysis, Fourth Edition continues to deliver a comprehensive introduction to the most commonly-used methods for analyzing survival data. Authored by a uniquely well-qualified author team, the Fourth Edition is a critically acclaimed guide to statistical methods with applications in clinical trials, epidemiology, areas of business, and the social sciences. The book features many real-world examples to illustrate applications within these various fields, although special consideration is given to the study of survival data in biomedical sciences. Emphasizing the latest research and providing the most up-to-date information regarding software applications in the field, Statistical Methods for Survival Data Analysis, Fourth Edition also includes: Marginal and random effect models for analyzing correlated censored or uncensored data Multiple types of two-sample and K-sample comparison analysis Updated treatment of parametric methods for regression model fitting with a new focus on accelerated failure time models Expanded coverage of the Cox proportional hazards model Exercises at the end of each chapter to deepen knowledge of the presented material Statistical Methods for Survival Data Analysis is an ideal text for upper-undergraduate and graduate-level courses on survival data analysis. The book is also an excellent resource for biomedical investigators, statisticians, and epidemiologists, as well as researchers in every field in which the analysis of survival data plays a role.
Новинка

11777.18 руб. или Купить в рассрочку!

Variety trials are an essential step in crop breeding and production. These trials are a significant investment in time and resources and inform numerous decisions from cultivar development to end-use. Crop Variety Trials: Methods and Analysis is a practical volume that provides valuable theoretical foundations as well as a guide to step-by-step implementation of effective trial methods and analysis in determining the best varieties and cultivars. Crop Variety Trials is divided into two sections. The first section provides the reader with a sound theoretical framework of variety evaluation and trial analysis. Chapters provide insights into the theories of quantitative genetics and principles of analyzing data. The second section of the book gives the reader with a practical step-by-step guide to accurately analyzing crop variety trial data. Combined these sections provide the reader with fuller understanding of the nature of variety trials, their objectives, and user-friendly database and statistical tools that will enable them to produce accurate analysis of data.
Новинка

6464.71 руб. или Купить в рассрочку!

A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.
Новинка

6992.61 руб. или Купить в рассрочку!

A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEs Symmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations.
Новинка

3795.93 руб. или Купить в рассрочку!

This is the first book of its kind to provide a practical and student-friendly guide to corpus linguistics that explains the nature of electronic data and how it can be collected and analyzed. Designed to equip readers with the technical skills necessary to analyze and interpret language data, both written and (orthographically) transcribed Introduces a number of easy-to-use, yet powerful, free analysis resources consisting of standalone programs and web interfaces for use with Windows, Mac OS X, and Linux Each section includes practical exercises, a list of sources and further reading, and illustrated step-by-step introductions to analysis tools Requires only a basic knowledge of computer concepts in order to develop the specific linguistic analysis skills required for understanding/analyzing corpus data
Новинка

8129.08 руб. или Купить в рассрочку!

An Introduction to Syntactic Analysis and Theory offers beginning students a comprehensive overview of and introduction to our current understanding of the rules and principles that govern the syntax of natural languages. Includes numerous pedagogical features such as ‘practice’ boxes and sidebars, designed to facilitate understanding of both the ‘hows’ and the ‘whys’ of sentence structure Guides readers through syntactic and morphological structures in a progressive manner Takes the mystery out of one of the most crucial aspects of the workings of language – the principles and processes behind the structure of sentences Ideal for students with minimal knowledge of current syntactic research, it progresses in theoretical difficulty from basic ideas and theories to more complex and advanced, up to date concepts in syntactic theory
Новинка

8740.59 руб. или Купить в рассрочку!

Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.
Новинка

11254.22 руб. или Купить в рассрочку!

An accessible introduction to the essential quantitative methods for making valuable business decisions Quantitative methods-research techniques used to analyze quantitative data-enable professionals to organize and understand numbers and, in turn, to make good decisions. Quantitative Methods: An Introduction for Business Management presents the application of quantitative mathematical modeling to decision making in a business management context and emphasizes not only the role of data in drawing conclusions, but also the pitfalls of undiscerning reliance of software packages that implement standard statistical procedures. With hands-on applications and explanations that are accessible to readers at various levels, the book successfully outlines the necessary tools to make smart and successful business decisions. Progressing from beginner to more advanced material at an easy-to-follow pace, the author utilizes motivating examples throughout to aid readers interested in decision making and also provides critical remarks, intuitive traps, and counterexamples when appropriate. The book begins with a discussion of motivations and foundations related to the topic, with introductory presentations of concepts from calculus to linear algebra. Next, the core ideas of quantitative methods are presented in chapters that explore introductory topics in probability, descriptive and inferential statistics, linear regression, and a discussion of time series that includes both classical topics and more challenging models. The author also discusses linear programming models and decision making under risk as well as less standard topics in the field such as game theory and Bayesian statistics. Finally, the book concludes with a focus on selected tools from multivariate statistics, including advanced regression models and data reduction methods such as principal component analysis, factor analysis, and cluster analysis. The book promotes the importance of an analytical approach, particularly when dealing with a complex system where multiple individuals are involved and have conflicting incentives. A related website features Microsoft Excel® workbooks and MATLAB® scripts to illustrate concepts as well as additional exercises with solutions. Quantitative Methods is an excellent book for courses on the topic at the graduate level. The book also serves as an authoritative reference and self-study guide for financial and business professionals, as well as readers looking to reinforce their analytical skills.
Новинка

1799 руб. или Купить в рассрочку!

2014 Reprint of 1958 Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This book, an introduction to the Weil-Zariski algebraic geometry, is an amplification of lectures for one of a series of courses, given by various people, going back to Zariski. Restricted to qualitative algebraic geometry, it is an admirable introduction to Weil's "Foundations" and, more generally, the whole of the modern literature as it existed before the advent of sheaves.
Новинка

10640.71 руб. или Купить в рассрочку!

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Новинка

11642.29 руб. или Купить в рассрочку!

Praise for the Second Edition «A must-have book for anyone expecting to do research and/or applications in categorical data analysis.» —Statistics in Medicine «It is a total delight reading this book.» —Pharmaceutical Research «If you do any analysis of categorical data, this is an essential desktop reference.» —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Новинка

6674.91 руб. или Купить в рассрочку!

Foundations of Risk Analysis presents the issues core to risk analysis – understanding what risk means, expressing risk, building risk models, addressing uncertainty, and applying probability models to real problems. The author provides the readers with the knowledge and basic thinking they require to successfully manage risk and uncertainty to support decision making. This updated edition reflects recent developments on risk and uncertainty concepts, representations and treatment. New material in Foundations of Risk Analysis includes: An up to date presentation of how to understand, define and describe risk based on research carried out in recent years. A new definition of the concept of vulnerability consistent with the understanding of risk. Reflections on the need for seeing beyond probabilities to measure/describe uncertainties. A presentation and discussion of a method for assessing the importance of assumptions (uncertainty factors) in the background knowledge that the subjective probabilities are based on A brief introduction to approaches that produce interval (imprecise) probabilities instead of exact probabilities. In addition the new version provides a number of other improvements, for example, concerning the use of cost-benefit analyses and the As Low As Reasonably Practicable (ALARP) principle. Foundations of Risk Analysis provides a framework for understanding, conducting and using risk analysis suitable for advanced undergraduates, graduates, analysts and researchers from statistics, engineering, finance, medicine and the physical sciences, as well as for managers facing decision making problems involving risk and uncertainty.
Новинка

2508.75 руб. или Купить в рассрочку!

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.
Новинка

10640.71 руб. или Купить в рассрочку!

Praise for the First Edition «This is a well-written and impressively presented introduction to probability and statistics. The text throughout is highly readable, and the author makes liberal use of graphs and diagrams to clarify the theory.» – The Statistician Thoroughly updated, Probability: An Introduction with Statistical Applications, Second Edition features a comprehensive exploration of statistical data analysis as an application of probability. The new edition provides an introduction to statistics with accessible coverage of reliability, acceptance sampling, confidence intervals, hypothesis testing, and simple linear regression. Encouraging readers to develop a deeper intuitive understanding of probability, the author presents illustrative geometrical presentations and arguments without the need for rigorous mathematical proofs. The Second Edition features interesting and practical examples from a variety of engineering and scientific fields, as well as: Over 880 problems at varying degrees of difficulty allowing readers to take on more challenging problems as their skill levels increase Chapter-by-chapter projects that aid in the visualization of probability distributions New coverage of statistical quality control and quality production An appendix dedicated to the use of Mathematica® and a companion website containing the referenced data sets Featuring a practical and real-world approach, this textbook is ideal for a first course in probability for students majoring in statistics, engineering, business, psychology, operations research, and mathematics. Probability: An Introduction with Statistical Applications, Second Edition is also an excellent reference for researchers and professionals in any discipline who need to make decisions based on data as well as readers interested in learning how to accomplish effective decision making from data.
Новинка

3416.62 руб. или Купить в рассрочку!

Lexical-Functional Syntax, 2nd Edition, the definitive text for Lexical Functional Grammar (LFG) with a focus on syntax, is updated to reflect recent developments in the field. Provides both an introduction to LFG and a synthesis of major theoretical developments in lexical-functional syntax over the past few decades Includes in-depth discussions of a large number of syntactic phenomena from typologically diverse languages Features extensive problem sets and solutions in each chapter to aid in self-study Incorporates reader feedback from the 1st Edition to correct errors and enhance clarity
Новинка

6840.46 руб. или Купить в рассрочку!

Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the pre-data collection stage to the post-data collection and post-analysis stages. It is also critical to various stakeholders: data collection agencies, analysts, data scientists, and management. This book: Explains how to integrate the notions of goal, data, analysis and utility that are the main building blocks of data analysis within any domain. Presents a framework for integrating domain knowledge with data analysis. Provides a combination of both methodological and practical aspects of data analysis. Discusses issues surrounding the implementation and integration of InfoQ in both academic programmes and business / industrial projects. Showcases numerous case studies in a variety of application areas such as education, healthcare, official statistics, risk management and marketing surveys. Presents a review of software tools from the InfoQ perspective along with example datasets on an accompanying website. This book will be beneficial for researchers in academia and in industry, analysts, consultants, and agencies that collect and analyse data as well as undergraduate and postgraduate courses involving data analysis.
Новинка

14358.83 руб. или Купить в рассрочку!

Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Новинка

8129.08 руб. или Купить в рассрочку!

Fully revised and updated, this book combines a theoretical background with examples and references to R, MINITAB and JMP, enabling practitioners to find state-of-the-art material on both foundation and implementation tools to support their work. Topics addressed include computer-intensive data analysis, acceptance sampling, univariate and multivariate statistical process control, design of experiments, quality by design, and reliability using classical and Bayesian methods. The book can be used for workshops or courses on acceptance sampling, statistical process control, design of experiments, and reliability. Graduate and post-graduate students in the areas of statistical quality and engineering, as well as industrial statisticians, researchers and practitioners in these fields will all benefit from the comprehensive combination of theoretical and practical information provided in this single volume. Modern Industrial Statistics: With applications in R, MINITAB and JMP: Combines a practical approach with theoretical foundations and computational support. Provides examples in R using a dedicated package called MISTAT, and also refers to MINITAB and JMP. Includes exercises at the end of each chapter to aid learning and test knowledge. Provides over 40 data sets representing real-life case studies. Is complemented by a comprehensive website providing an introduction to R, and installations of JMP scripts and MINITAB macros, including effective tutorials with introductory material: www.wiley.com/go/modern_industrial_statistics.
Новинка

10261.41 руб. или Купить в рассрочку!

A comprehensive introduction to the theory and practice of contemporary data science analysis for railway track engineering Featuring a practical introduction to state-of-the-art data analysis for railway track engineering, Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering addresses common issues with the implementation of big data applications while exploring the limitations, advantages, and disadvantages of more conventional methods. In addition, the book provides a unifying approach to analyzing large volumes of data in railway track engineering using an array of proven methods and software technologies. Dr. Attoh-Okine considers some of today’s most notable applications and implementations and highlights when a particular method or algorithm is most appropriate. Throughout, the book presents numerous real-world examples to illustrate the latest railway engineering big data applications of predictive analytics, such as the Union Pacific Railroad’s use of big data to reduce train derailments, increase the velocity of shipments, and reduce emissions. In addition to providing an overview of the latest software tools used to analyze the large amount of data obtained by railways, Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering: • Features a unified framework for handling large volumes of data in railway track engineering using predictive analytics, machine learning, and data mining • Explores issues of big data and differential privacy and discusses the various advantages and disadvantages of more conventional data analysis techniques • Implements big data applications while addressing common issues in railway track maintenance • Explores the advantages and pitfalls of data analysis software such as R and Spark, as well as the Apache™ Hadoop® data collection database and its popular implementation MapReduce Big Data and Differential Privacy is a valuable resource for researchers and professionals in transportation science, railway track engineering, design engineering, operations research, and railway planning and management. The book is also appropriate for graduate courses on data analysis and data mining, transportation science, operations research, and infrastructure management. NII ATTOH-OKINE, PhD, PE is Professor in the Department of Civil and Environmental Engineering at the University of Delaware. The author of over 70 journal articles, his main areas of research include big data and data science; computational intelligence; graphical models and belief functions; civil infrastructure systems; image and signal processing; resilience engineering; and railway track analysis. Dr. Attoh-Okine has edited five books in the areas of computational intelligence, infrastructure systems and has served as an Associate Editor of various ASCE and IEEE journals.
Новинка

9930.88 руб. или Купить в рассрочку!

This book provides an essential understanding of statistical concepts necessary for the analysis of genomic and proteomic data using computational techniques. The author presents both basic and advanced topics, focusing on those that are relevant to the computational analysis of large data sets in biology. Chapters begin with a description of a statistical concept and a current example from biomedical research, followed by more detailed presentation, discussion of limitations, and problems. The book starts with an introduction to probability and statistics for genome-wide data, and moves into topics such as clustering, classification, multi-dimensional visualization, experimental design, statistical resampling, and statistical network analysis. Clearly explains the use of bioinformatics tools in life sciences research without requiring an advanced background in math/statistics Enables biomedical and life sciences researchers to successfully evaluate the validity of their results and make inferences Enables statistical and quantitative researchers to rapidly learn novel statistical concepts and techniques appropriate for large biological data analysis Carefully revisits frequently used statistical approaches and highlights their limitations in large biological data analysis Offers programming examples and datasets Includes chapter problem sets, a glossary, a list of statistical notations, and appendices with references to background mathematical and technical material Features supplementary materials, including datasets, links, and a statistical package available online Statistical Bioinformatics is an ideal textbook for students in medicine, life sciences, and bioengineering, aimed at researchers who utilize computational tools for the analysis of genomic, proteomic, and many other emerging high-throughput molecular data. It may also serve as a rapid introduction to the bioinformatics science for statistical and computational students and audiences who have not experienced such analysis tasks before.
Новинка

11477.2 руб. или Купить в рассрочку!

Praise for the Fourth Edition «As with previous editions, the authors have produced a leading textbook on regression.» —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.
Новинка

9500.64 руб. или Купить в рассрочку!

A practical and methodological approach to the statistical logic of biostatistics in the field of health research Focusing on a basic understanding of the methods and analyses in health research, Introduction to Biostatistical Applications in Health Research with Microsoft® Office Excel® provides statistical concepts for interpreting results using Excel. The book emphasizes the application of methods and presents the most common methodological procedures in health research, which includes multiple regression, ANOVA, ANCOVA, logistic regression, Cox regression, stratified analysis, life table analysis, and nonparametric parallels. The book is constructed around a flowchart that outlines the appropriate circumstances for selecting a method to analyze a specific set of data. Beginning with an introduction to the foundational methods of statistical logic before moving on to more complex methods, Introduction to Biostatistical Applications in Health Research with Microsoft® Office Excel® also includes: Detailed discussions of how knowledge and skills in health research have been integrated with biostatistical methods Numerous examples with clear explanations that use mostly real-world health research data in order to provide a better understanding of the practical applications Implements Excel graphic representations throughout to help readers evaluate and analyze individual results An appendix with basic information on how to use Excel A companion website with additional Excel files, data sets, and homework problems as well as an Instructor’s Solutions Manual Introduction to Biostatistical Applications in Health Research with Microsoft® Office Excel® is an excellent textbook for upper-undergraduate and graduate-level courses in biostatistics and public health. In addition, the book is an appropriate reference for both health researchers and professionals.
Новинка

7214.34 руб. или Купить в рассрочку!

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book
Новинка

4967.38 руб. или Купить в рассрочку!

A friendly and accessible approach to applying statistics in the real world With an emphasis on critical thinking, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics presents fun and unique examples, guides readers through the entire data collection and analysis process, and introduces basic statistical concepts along the way. Leaving proofs and complicated mathematics behind, the author portrays the more engaging side of statistics and emphasizes its role as a problem-solving tool. In addition, light-hearted case studies illustrate the application of statistics to real data analyses, highlighting the strengths and weaknesses of commonly used techniques. Written for the growing academic and industrial population that uses statistics in everyday life, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics highlights important issues that often arise when collecting and sifting through data. Featured concepts include: • Descriptive statistics • Analysis of variance • Probability and sample distributions • Confidence intervals • Hypothesis tests • Regression • Statistical correlation • Data collection • Statistical analysis with graphs Fun and inviting from beginning to end, The Art of Data Analysis is an ideal book for students as well as managers and researchers in industry, medicine, or government who face statistical questions and are in need of an intuitive understanding of basic statistical reasoning.
Новинка

6053.99 руб. или Купить в рассрочку!

Praise for the First Edition “…a well-written book on data analysis and data mining that provides an excellent foundation…” —CHOICE “This is a must-read book for learning practical statistics and data analysis…” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.
Новинка

8664.87 руб. или Купить в рассрочку!

A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.
Новинка

8056.25 руб. или Купить в рассрочку!

Features easy-to-follow insight and clear guidelines to perform data analysis using IBM SPSS® Performing Data Analysis Using IBM SPSS® uniquely addresses the presented statistical procedures with an example problem, detailed analysis, and the related data sets. Data entry procedures, variable naming, and step-by-step instructions for all analyses are provided in addition to IBM SPSS point-and-click methods, including details on how to view and manipulate output. Designed as a user’s guide for students and other interested readers to perform statistical data analysis with IBM SPSS, this book addresses the needs, level of sophistication, and interest in introductory statistical methodology on the part of readers in social and behavioral science, business, health-related, and education programs. Each chapter of Performing Data Analysis Using IBM SPSS covers a particular statistical procedure and offers the following: an example problem or analysis goal, together with a data set; IBM SPSS analysis with step-by-step analysis setup and accompanying screen shots; and IBM SPSS output with screen shots and narrative on how to read or interpret the results of the analysis. The book provides in-depth chapter coverage of: IBM SPSS statistical output Descriptive statistics procedures Score distribution assumption evaluations Bivariate correlation Regressing (predicting) quantitative and categorical variables Survival analysis t Test ANOVA and ANCOVA Multivariate group differences Multidimensional scaling Cluster analysis Nonparametric procedures for frequency data Performing Data Analysis Using IBM SPSS is an excellent text for upper-undergraduate and graduate-level students in courses on social, behavioral, and health sciences as well as secondary education, research design, and statistics. Also an excellent reference, the book is ideal for professionals and researchers in the social, behavioral, and health sciences; applied statisticians; and practitioners working in industry.
Новинка

10261.41 руб. или Купить в рассрочку!

Praise for the First Edition «…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics.» -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.
Новинка

9469.06 руб. или Купить в рассрочку!

It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.
Новинка

9120.61 руб. или Купить в рассрочку!

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.
Новинка

7164.96 руб. или Купить в рассрочку!

Most practitioners within wind energy have only a very basic knowledge about meteorology, leading to a lack of understanding of one of the most fundamental subjects in wind energy. This book will therefore provide an easy-to-understand introduction to the subject of meteorology, as seen from the viewpoint of wind energy. Catering for a range of academic backgrounds, the book is mathematically rigorous with accessible explanations for non-mathematically oriented readers. Through exercises in the text and at the end of each chapter the reader will be challenged to think, seek further information and practice the knowledge obtained from reading the book. This practical yet comprehensive reference will enable readers to fully understand the theoretical background of meteorology with wind energy in mind and will include topics such as: measurements; wind profiles; wakes; modelling; turbulence and the fundamentals of atmospheric flow on all scales including the local scale. Key features: • Provides practitioners of wind energy with a solid theoretical grounding in relevant aspects of meteorology enabling them to exercise useful judgment in matters related to resource estimation, wind farm development, planning, turbine design and electrical grids. • Supports a growing area of professional development with the increasing importance of wind energy estimation in all aspects of electrical energy production from wind. • Accompanying website includes data sets for exercises in data analysis, photographs, animations & worked examples, helping to further bridge the gap between theory and practice. Meteorology for Wind Energy: An Introduction is aimed at engineers, developers and project managers in the wind power and electrical utility sectors without the essential theoretical background required to understand the topic. It will also have significant appeal to senior undergraduate and postgraduate students of Wind Energy, Environmental Studies or Renewables Studies.
Новинка

10245.22 руб. или Купить в рассрочку!

A modern, comprehensive treatment of latent class and latent transition analysis for categorical data On a daily basis, researchers in the social, behavioral, and health sciences collect information and fit statistical models to the gathered empirical data with the goal of making significant advances in these fields. In many cases, it can be useful to identify latent, or unobserved, subgroups in a population, where individuals' subgroup membership is inferred from their responses on a set of observed variables. Latent Class and Latent Transition Analysis provides a comprehensive and unified introduction to this topic through one-of-a-kind, step-by-step presentations and coverage of theoretical, technical, and practical issues in categorical latent variable modeling for both cross-sectional and longitudinal data. The book begins with an introduction to latent class and latent transition analysis for categorical data. Subsequent chapters delve into more in-depth material, featuring: A complete treatment of longitudinal latent class models Focused coverage of the conceptual underpinnings of interpretation and evaluationof a latent class solution Use of parameter restrictions and detection of identification problems Advanced topics such as multi-group analysis and the modeling and interpretation of interactions between covariates The authors present the topic in a style that is accessible yet rigorous. Each method is presented with both a theoretical background and the practical information that is useful for any data analyst. Empirical examples showcase the real-world applications of the discussed concepts and models, and each chapter concludes with a «Points to Remember» section that contains a brief summary of key ideas. All of the analyses in the book are performed using Proc LCA and Proc LTA, the authors' own software packages that can be run within the SAS® environment. A related Web site houses information on these freely available programs and the book's data sets, encouraging readers to reproduce the analyses and also try their own variations. Latent Class and Latent Transition Analysis is an excellent book for courses on categorical data analysis and latent variable models at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the social, behavioral, and health sciences who conduct latent class and latent transition analysis in their everyday work.
Новинка

12014.85 руб. или Купить в рассрочку!

Bioinformatics, Biocomputing and Perl presents a modern introduction to bioinformatics computing skills and practice. Structuring its presentation around four main areas of study, this book covers the skills vital to the day-to-day activities of today’s bioinformatician. Each chapter contains a series of maxims designed to highlight key points and there are exercises to supplement and cement the introduced material. Working with Perl presents an extended tutorial introduction to programming through Perl, the premier programming technology of the bioinformatics community. Even though no previous programming experience is assumed, completing the tutorial equips the reader with the ability to produce powerful custom programs with ease. Working with Data applies the programming skills acquired to processing a variety of bioinformatics data. In addition to advice on working with important data stores such as the Protein DataBank, SWISS-PROT, EMBL and the GenBank, considerable discussion is devoted to using bioinformatics data to populate relational database systems. The popular MySQL database is used in all examples. Working with the Web presents a discussion of the Web-based technologies that allow the bioinformatics researcher to publish both data and applications on the Internet. Working with Applications shifts gear from creating custom programs to using them. The tools described include Clustal-W, EMBOSS, STRIDE, BLAST and Xmgrace. An introduction to the important Bioperl Project concludes this chapter and rounds off the book.
Новинка

3880.76 руб. или Купить в рассрочку!

The bestselling guide to qualitative research, updated and expanded Qualitative Research is the essential guide to understanding, designing, conducting, and presenting a qualitative research study. This fourth edition features new material covering mixed methods, action research, arts-based research, online data sources, and the latest in data analysis, including data analysis software packages as well as narrative and poetic analysis strategies. A new section offers multiple ways of presenting qualitative research findings. The reader-friendly, jargon-free style makes this book accessible to both novice and experienced researchers, emphasizing the role of a theoretical framework in designing a study while providing practical guidance. Qualitative research reaches beyond the what, where, and when of quantitative analysis to investigate the why and how behind human behavior and the reasons that govern such behavior, but this presents a number of significant challenges. This guide is an invaluable reference for students and practitioners alike, providing the deep understanding that this sometimes difficult area of research requires to produce accurate results. The book contains a step-by-step guide to analyzing qualitative data and an addendum for graduate students with a template for a thesis, dissertation, or grant application. Build a strong foundation in qualitative research theory and application Design and implement effective qualitative research studies Communicate findings more successfully with clear presentation Explore data sources, data analysis tools, and the different types of research
Новинка

7981.26 руб. или Купить в рассрочку!

Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.
Новинка

13660.29 руб. или Купить в рассрочку!

A technological overview of LTE and WiMAX LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis provides a practical guide to LTE and WiMAX technologies introducing various tools and concepts used within. In addition, topics such as traffic modelling of IP-centric networks, RF propagation, fading, mobility, and indoor coverage are explored; new techniques which increase throughput such as MIMO and AAS technology are highlighted; and simulation, network design and performance analysis are also examined. Finally, in the latter part of the book Korowajczuk gives a step-by-step guide to network design, providing readers with the capability to build reliable and robust data networks. By focusing on LTE and WiMAX this book extends current network planning approaches to next generation wireless systems based on OFDMA, providing an essential resource for engineers and operators of fixed and wireless broadband data access networks. With information presented in a sequential format, LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis aids a progressive development of knowledge, complementing latter graduate and postgraduate courses while also providing a valuable resource to network designers, equipment vendors, reference material, operators, consultants, and regulators. Key Features: One of the first books to comprehensively explain and evaluate LTE Provides an unique explanation of the basic concepts involved in wireless broadband technologies and their applications in LTE, WiMAX, and WLAN before progressing to the network design Demonstrates the application of network planning for LTE and WiMAX with theoretical and practical approaches Includes all aspects of system design and optimization, such as dynamic traffic simulations, multi-layered traffic analysis, statistical interference analysis, and performance estimations
Новинка

3572.38 руб. или Купить в рассрочку!

"…I know of no better book of its kind…" (Journal of the Royal Statistical Society, Vol 169 (1), January 2006) A revised and updated edition of this bestselling introductory textbook to statistical analysis using the leading free software package R This new edition of a bestselling title offers a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a wide range of disciplines. Step-by-step instructions help the non-statistician to fully understand the methodology. The book covers the full range of statistical techniques likely to be needed to analyse the data from research projects, including elementary material like t–tests and chi–squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. Includes numerous worked examples and exercises within each chapter.
Новинка

10412.84 руб. или Купить в рассрочку!

The origins and significance of electron density in the chemical, biological, and materials sciences Electron density is one of the fundamental concepts underlying modern chemistry and one of the key determinants of molecular structure and stability. It is also the basic variable of density functional theory, which has made possible, in recent years, the application of the mathematical theory of quantum physics to chemical and biological systems. With an equal emphasis on computational and philosophical questions, A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Materials Sciences addresses the foundations, analysis, and applications of this pivotal chemical concept. The first part of the book presents a coherent and logically connected treatment of the theoretical foundations of the electron density concept. Discussion includes the use of probabilities in statistical physics; the origins of quantum mechanics; the philosophical questions at the heart of quantum theory, like quantum entanglement; and methods for the experimental determination of electron density distributions. The remainder of the book deals with applications of the electron density concept in the chemical, biological, and materials sciences. Contributors offer insights on how a deep understanding of the origins of chemical reactivity can be gleaned from the concepts of density functional theory. Also discussed are the applications of electron density in molecular similarity analysis and electron density-derived molecular descriptors, such as electrostatic potentials and local ionization energies. This section concludes with some applications of modern density functional theory to surfaces and interfaces. An essential reference for students as well as quantum and computational chemists, physical chemists, and physicists, this book offers an unparalleled look at the development of the concept of electron density from its inception to its role in density functional theory, which led to the 1998 Nobel Prize in Chemistry.
Новинка

9500.64 руб. или Купить в рассрочку!

Introduction to Statistical Analysis of Laboratory Data presents a detailed discussion of important statistical concepts and methods of data presentation and analysis Provides detailed discussions on statistical applications including a comprehensive package of statistical tools that are specific to the laboratory experiment process Introduces terminology used in many applications such as the interpretation of assay design and validation as well as “fit for purpose” procedures including real world examples Includes a rigorous review of statistical quality control procedures in laboratory methodologies and influences on capabilities Presents methodologies used in the areas such as method comparison procedures, limit and bias detection, outlier analysis and detecting sources of variation Analysis of robustness and ruggedness including multivariate influences on response are introduced to account for controllable/uncontrollable laboratory conditions
Новинка

15045.26 руб. или Купить в рассрочку!

R – the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.
Новинка

2169.35 руб. или Купить в рассрочку!

R – the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.
Новинка

10322.83 руб. или Купить в рассрочку!

A user-friendly, hands-on guide to recognizing and conducting proper research techniques in data collection Offering a unique approach to numerical research methods, Analyzing Quantitative Data: An Introduction for Social Researchers presents readers with the necessary statistical applications for carrying out the key phases of conducting and evaluating a research project. The book guides readers through the steps of data analysis, from organizing raw data to utilizing descriptive statistics and tests of significance, drawing valid conclusions, and writing research reports. The author successfully provides a presentation that is accessible and hands-on rather than heavily theoretical, outlining the key quantitative processes and the use of software to successfully draw valid conclusions from gathered data. In its discussion of methods for organizing data, the book includes suggestions for coding and entry into spreadsheets or databases while also introducing commonly used descriptive statistics and clarifying their roles in data analysis. Next, inferential statistics is explored in-depth with explanations of and instructions for performing chi-square tests, t-tests, analyses of variance, correlation and regression analyses, and a number of advanced statistical procedures. Each chapter contains explanations of when to use the tests described, relevant formulas, and sample computations. The book concludes with guidance on extracting meaningful conclusions from statistical tests and writing research reports that describe procedures and analyses. Throughout the book, Statistical Resources for SPSS® sections provide fundamental instruction for using SPSS® to obtain the results presented. Where necessary, the author provides basic theoretical explanations for distributions and background information regarding formulas. Each chapter concludes with practice problems, and a related website features derivations of the book's formulas along with additional resources for performing the discussed processes. Analyzing Quantitative Data is an excellent book for social sciences courses on data analysis and research methods at the upper-undergraduate and graduate levels. It also serves as a valuable reference for applied statisticians and practitioners working in the fields of education, medicine, business and public service who analyze, interpret, and evaluate data in their daily work.
Новинка

9500.64 руб. или Купить в рассрочку!

An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic. Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University.