Новинка

7743.11 руб.

Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the model most suitable for the problems they are interested in. The book is targeted at graduate students and researchers who plan to investigate multiphase flows using LBMs. Throughout the text most of the popular multiphase LBMs are analyzed both theoretically and through numerical simulation. The authors present many of the mathematical derivations of the models in greater detail than is currently found in the existing literature. The approach to understanding and classifying the various models is principally based on simulation compared against analytical and observational results and discovery of undesirable terms in the derived macroscopic equations and sometimes their correction. A repository of FORTRAN codes for multiphase LBM models is also provided.
Новинка

8777 руб.

After two decades of development, the Lattice Boltzmann method has gain noticeable popularity as an alternative numerical approach for modeling the fluid flow. The main objective of this research is to study the contaminated flow removal from rectangular cavity and the effects of Reynolds varying on the removal percentage. In this research, solid-fluid flow analysis using lattice Boltzmann method, is offered for over cavity flow by considering different Reynolds numbers with different cavity aspect ratios. This research intends to provide the liquid and solid particle interaction investigation results by employing the Lagrangian point force approach for the particle's trajectory analysis in both lid driven cavity flow and flow over cavity.
Новинка

8914 руб.

The present thesis deals with the code development of a 2-D finite volume and lattice Boltzmann method for steady, incompressible fluid flow problems and the also the computational performance of both the methods is studied for various fluid flow problems. The former method uses Navier-Stokes equation to capture fluid motion. The code is based on SIMPLE algorithm for pressure-velocity coupling of incompressible flows using staggered grid arrangement. The diffusion term in the governing equations is discretized using deferred central-difference scheme and the convection term is discretized using deferred QUICK scheme. The latter one uses Boltzmann equation with D2Q9 model. The soundness of Lattice Boltzmann and finite volume method is checked by implementing it on test problems including Lid-driven cavity flow, Pipe flow and Backward-facing step (BFS) flow. All the results obtained in the present work are validated with the results available in the literature. The results obtained from both the methods were in excellent agreement with each other as well as with the published data. In pipe flow, the entrance length has been measured for various Reynolds numbers.
Новинка

4527 руб.

Doctoral Thesis / Dissertation from the year 2007 in the subject Mathematics - Analysis, University of Constance (Fachbereich Mathematik & Statistik), 69 entries in the bibliography, language: English, abstract: Lattice-Boltzmann algorithms represent a quite novel class of numerical schemes, which are used to solve evolutionary partial differential equations (PDEs).In contrast to other methods (FEM,FVM), lattice-Boltzmann methods rely on a mesoscopic approach. The idea consists in setting up an artificial, grid-based particle dynamics, which is chosen such that appropriate averages provide approximate solutions of a certain PDE, typically in the area of fluid dynamics. As lattice-Boltzmann schemes are closely related to finite velocity Boltzmann equations being singularly perturbed by special scalings, their consistency is not obvious.This work is concerned with the analysis of lattice-Boltzmann methods also focusing certain numeric phenomena like initial layers, multiple time scales and boundary layers.As major analytic tool, regular (Hilbert) expansions are employed to establish consistency.Exemplarily, two and three population algorithms are studied in one space dimension, mostlydiscretizing the advection-diffusion equation. It is shown how these model schemes can be derived from two-dimensional schemes in the case of special symmetries.The analysis of the schemes is preceded by an examination of the singular limit being characteristic of the corresponding scaled finit...
Новинка

9276.82 руб.

An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Новинка

9264 руб.

BRST symmetry provides a basis for the modern quantization of gauge theory. It can be generalized depending on whether the transformations are finite field-dependent, local or non-local. A BRST method also provides an elegant and powerful tool for the construction and analysis of constrained systems in 1-form and 2-form gauge theory which requires the Hamiltonian formalism. This book is based on the generalization of BRST transformations and its application to various gauge theories in both Lagrangian and Hamiltonian formalism.
Новинка

7359.44 руб.

A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
Новинка

11620.18 руб.

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.
Новинка

2314 руб.

All healing is based on consciousness and freedom. All freedom is based upon the precept of the existence of free will. Free will can only exist if one is conscious. This also applies to healing.I have divided the presentation of this work into Theory, Method, and Application. The Theory division will deal with the metaphysics behind the universe and how consciousness is the basis of all existence. The Method division will deal with what the practitioner must achieve in their own development and evolution to be effective in creating a therapeutic response in their patient. The Application division is a short summary discussion based upon the first two divisions.
Новинка

8587.68 руб.

The first book to be published on the Theta method, outlining under what conditions the method outperforms other forecasting methods This book is the first to detail the Theta method of forecasting – one of the most difficult-to-beat forecasting benchmarks, which topped the biggest forecasting competition in the world in 2000: the M3 competition. Written by two of the leading experts in the forecasting field, it illuminates the exact replication of the method and under what conditions the method outperforms other forecasting methods. Recent developments such as multivariate models are also included, as are a series of practical applications in finance, economics, and healthcare. The book also offers practical tools in MS Excel and guidance, as well as provisional access, for the use of R source code and respective packages. Forecasting with the Theta Method: Theory and Applications includes three main parts. The first part, titled Theory, Methods, Models & Applications details the new theory about the method. The second part, Applications & Performance in Forecasting Competitions, describes empirical results and simulations on the method. The last part roadmaps future research and also include contributions from another leading scholar of the method – Dr. Fotios Petropoulos. First ever book to be published on the Theta Method Explores new theory and exact conditions under which methods would outperform most forecasting benchmarks Clearly written with practical applications Employs R – open source code with all included implementations Forecasting with the Theta Method: Theory and Applications is a valuable tool for both academics and practitioners involved in forecasting and respective software development.
Новинка

2339 руб.

An introduction to decision science with an emphasis on queueing theory. Decision science methods are examined to determine an appropriate method for analyzing call centers. A hybrid queueing theory/simulation model is discussed as a method of analyzing call center operational characteristics.
Новинка

8639 руб.

Over the years, the numerical modeling of transport phenomena has been obtained a great portion in the solution of scientific and industrial problems. One of the new numerical techniques is Lattice Boltzmann Method. This method has a lot of advantages like easy implementation, flexible boundary condition, and fast convergence. Also, t is appropriate for simulation of complex geometries and domains like porous media, multiphase flow and etc. The present book provides an investigation of the transport phenomenon in porous media within a computational geometry using LBM. This book should help shed some light on the industrial and educational investigations of porous media and should be particularly useful to professionals in LBM modeling, or anyone else who may be considering employing of numerical techniques for porous and non-porous mediums.
Новинка

8265.65 руб.

The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.
Новинка

9260.86 руб.

Classical and Modern Approaches in the Theory of Mechanisms is a study of mechanisms in the broadest sense, covering the theoretical background of mechanisms, their structures and components, the planar and spatial analysis of mechanisms, motion transmission, and technical approaches to kinematics, mechanical systems, and machine dynamics. In addition to classical approaches, the book presents two new methods: the analytic-assisted method using Turbo Pascal calculation programs, and the graphic-assisted method, outlining the steps required for the development of graphic constructions using AutoCAD; the applications of these methods are illustrated with examples. Aimed at students of mechanical engineering, and engineers designing and developing mechanisms in their own fields, this book provides a useful overview of classical theories, and modern approaches to the practical and creative application of mechanisms, in seeking solutions to increasingly complex problems.
Новинка

4039 руб.

"the Theory is the Theater of the Mind "Based on the quote of David BohmConcepts, Theories and Philosophies by :Gottfried Leibniz / Sigmund Freud / Ludwig Boltzmann / Jacques Lacan / Franz Brentano / Henri Bergson / Albert Einstein / Gilles DeLeuze / Héléna Blavatsky / James MaxWell / Peter Ouspensky / George Gurdjieff / Carl Jung / Will McWhinney / David Bohm / Kazimiertz Dabrowski / Roger Penrose
Новинка

683 руб.

Эта книга — репринт оригинального издания (издательство "Simpkin, [etc.]", 1843 год), созданный на основе электронной копии высокого разрешения, которую очистили и обработали вручную, сохранив структуру и орфографию оригинального издания. Редкие, забытые и малоизвестные книги, изданные с петровских времен до наших дней, вновь доступны в виде печатных книг.
Новинка

682 руб.

Эта книга — репринт оригинального издания, созданный на основе электронной копии высокого разрешения, которую очистили и обработали вручную, сохранив структуру и орфографию оригинального издания. Редкие, забытые и малоизвестные книги, изданные с петровских времен до наших дней, вновь доступны в виде печатных книг.
Новинка

11232.84 руб.

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Новинка

12395.59 руб.

Comprehensive and up to date coverage of robust control theory and its application • Presented in a well-planned and logical way • Written by a respected leading author, with extensive experience in robust control • Accompanying website provides solutions manual and other supplementary material
Новинка

4202 руб.

In this book, models for the prediction of lattice parameters of substitutional and interstitial solid solutions as a function of concentration and temperature are presented. For substitutional solid solutions, the method is based on the hypothesis that the measured lattice parameter versus concentration is the average of the interatomic spacing within a selected region of a Bravais lattice. The model is applied on Ni-Cu and Ge-Si solid solutions.For the interstitial solid solution of the Fe-C system, the method is based on the assumption that the change in lattice parameter of the pure Fe phase is due to the occupation by carbon atoms to the octahedral holes in the fcc austenite; and bct martensite.The model of lattice parameter versus temperature for both substitutional and interstitial solid solutions is based on the relative change in length and vacancy concentration at lattice sites that are in thermal equilibrium. Combinations of both models then facilitate the calculation of lattice parameters as a function of concentration and temperature. The results are discussed accordingly.
Новинка

8269.62 руб.

A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations. The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included. Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.
Новинка

10067.14 руб.

The seismoelectric method consists of measuring electromagnetic signals associated with the propagation of seismic waves or seismic sources in porous media. This method is useful in an increasing number of applications, for example to characterize aquifers, contaminant plumes or the vadose zone. This book provides the first full overview of the fundamental concepts of this method. It begins with a historical perspective, provides a full explanation of the fundamental mechanisms, laboratory investigations, and the formulation of the forward and inverse problems. It provides a recent extension of the theory to two-phase flow conditions, and a new approach called seismoelectric beamforming. It concludes with a chapter presenting a perspective on the method. This book is a key reference for academic researchers in geophysics, environmental geosciences, geohydrology, environmental engineering and geotechnical engineering. It will also be valuable reading for graduate courses dealing with seismic wave propagation and related electromagnetic effects.
Новинка

5677 руб.

Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Includes several real-world examples in full detail.
Новинка

12395.59 руб.

Presents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell’s equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program
Новинка

15267 руб.

TRANSFER MATRIX METHOD FOR MULTIBODY SYSTEMS: THEORY AND APPLICATIONS Xiaoting Rui, Guoping Wang and Jianshu Zhang – Nanjing University of Science and Technology, China Featuring a new method of multibody system dynamics, this book introduces the transfer matrix method systematically for the first time. First developed by the lead author and his research team, this method has found numerous engineering and technological applications. Readers are first introduced to fundamental concepts like the body dynamics equation, augmented operator and augmented eigenvector before going in depth into precision analysis and computations of eigenvalue problems as well as dynamic responses. The book also covers a combination of mixed methods and practical applications in multiple rocket launch systems, self-propelled artillery as well as launch dynamics of on-ship weaponry. • Comprehensively introduces a new method of analyzing multibody dynamics for engineers • Provides a logical development of the transfer matrix method as applied to the dynamics of multibody systems that consist of interconnected bodies • Features varied applications in weaponry, aeronautics, astronautics, vehicles and robotics Written by an internationally renowned author and research team with many years' experience in multibody systems Transfer Matrix Method of Multibody System and Its Applications is an advanced level text for researchers and engineers in mechanical system dynamics. It is a comprehensive reference for advanced students and researchers in the related fields of aerospace, vehicle, robotics and weaponry engineering.
Новинка

11529.76 руб.

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples
Новинка

10071.55 руб.

A comprehensive advanced level examination of the transport theory of nanoscale devices Provides advanced level material of electron transport in nanoscale devices from basic principles of quantum mechanics through to advanced theory and various numerical techniques for electron transport Combines several up-to-date theoretical and numerical approaches in a unified manner, such as Wigner-Boltzmann equation, the recent progress of carrier transport research for nanoscale MOS transistors, and quantum correction approximations The authors approach the subject in a logical and systematic way, reflecting their extensive teaching and research backgrounds
Новинка

12007.52 руб.

Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applications: vehicles, computing and communications equipment, compressors, fans, and household appliances, and hands-free speech. The author concludes with other emerging techniques and innovative algorithms. Encompasses theoretical background, implementation considerations and application know-how Shows how to tackle broader problems in signal processing, control, and transudcers Covers both farfield and nearfield techniques in a balanced way Introduces innovative algorithms including equivalent source imaging (NESI) and high-resolution nearfield arrays Selected code examples available for download for readers to practice on their own Presentation slides available for instructor use A valuable resource for Postgraduates and researchers in acoustics, noise control engineering, audio engineering, and signal processing.
Новинка

8134.86 руб.

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition is a comprehensively updated new edition and is a unique book on the application of the finite element method to heat and mass transfer. • Addresses fundamentals, applications and computer implementation • Educational computer codes are freely available to download, modify and use • Includes a large number of worked examples and exercises • Fills the gap between learning and research
Новинка

2114 руб.

Bachelor Thesis from the year 2014 in the subject Engineering - Computer Engineering, grade: 1,0, Hamburg University of Technology (Institut für Eingebettete Systeme), language: English, abstract: The aim of this thesis is to identify the characteristics of lattice-based cryptosystems. The use of encryption and signature schemes can be insecure considering attacks by a quantum computer and inefficient in the computation time. An alternative cryptography is proposed, which is based on worst-case lattice problems. The security and the hardness of the underlying computational problems will be analyzed by providing collaboration between the linear-algebra, complexity-theory and the public-key cryptography.
Новинка

13169.53 руб.

Discusses the CFD-DEM method of modeling which combines both the Discrete Element Method and Computational Fluid Dynamics to simulate fluid-particle interactions. Deals with both theoretical and practical concepts of CFD-DEM, its numerical implementation accompanied by a hands-on numerical code in FORTRAN Gives examples of industrial applications
Новинка

12395.59 руб.

An extensive text reference includes around an asteroid – a new and important topic Covers the most updated contents in spacecraft dynamics and control, both in theory and application Introduces the application to motion around asteroids – a new and important topic Written by a very experienced researcher in this area
Новинка

8202 руб.

The monograph is devoted to a new theory of differential calculus, organically and naturally including three components: finite, infinite and continual theory of differential calculus. The new triune theory overlaps multiply the classical theory scope of application due to that unlike the classical theory which is focused exclusively on the function, the author theory is focused both on function and function increments, and increments of any order. The offered theory has perfect theoretical and practical proofs and study. The book is available for a wide range of readers - from the leading experts in mathematical analysis to schoolchildren of secondary schools.
Новинка

3577 руб.

Research Paper (postgraduate) from the year 2011 in the subject Mathematics - Stochastics, grade: 1,0, University of Ulm, language: English, abstract: This work combines two beautiful branches of mathematics: geometry and random fields. The mathematical basics needed to understand the theory are developed carefully. Enriched with illustrative examples an easily implementable method for the analysis of a wide range of surfaces, e.g. paper or metallic surfaces, is provided and therefore suits for direct application.
Новинка

5664 руб.

11 Basic Concepts of Structural Analysis 2 Slope- Deflection Method 3 Moment Distribution Method 4 Approximate Analysis of multistory Frames 5 Fundamental Concept of Flexibility 6 Fundamental Concept of stiffness 7 Plastic Theory 8 Plastic Analysis
Новинка

11616.5 руб.

Aimed at senior undergraduates and first-year graduate students, this book offers a principles-based approach to inorganic chemistry that, unlike other texts, uses chemical applications of group theory and molecular orbital theory throughout as an underlying framework. This highly physical approach allows students to derive the greatest benefit of topics such as molecular orbital acid-base theory, band theory of solids, and inorganic photochemistry, to name a few. Takes a principles-based, group and molecular orbital theory approach to inorganic chemistry The first inorganic chemistry textbook to provide a thorough treatment of group theory, a topic usually relegated to only one or two chapters of texts, giving it only a cursory overview Covers atomic and molecular term symbols, symmetry coordinates in vibrational spectroscopy using the projection operator method, polyatomic MO theory, band theory, and Tanabe-Sugano diagrams Includes a heavy dose of group theory in the primary inorganic textbook, most of the pedagogical benefits of integration and reinforcement of this material in the treatment of other topics, such as frontier MO acid–base theory, band theory of solids, inorganic photochemistry, the Jahn-Teller effect, and Wade's rules are fully realized Very physical in nature compare to other textbooks in the field, taking the time to go through mathematical derivations and to compare and contrast different theories of bonding in order to allow for a more rigorous treatment of their application to molecular structure, bonding, and spectroscopy Informal and engaging writing style; worked examples throughout the text; unanswered problems in every chapter; contains a generous use of informative, colorful illustrations
Новинка

10380.98 руб.

Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a comprehensively updated new edition of the popular textbook. It presents the theory of vibrations in the context of structural analysis and covers applications in mechanical and aerospace engineering. Key features include: A systematic approach to dynamic reduction and substructuring, based on duality between mechanical and admittance concepts An introduction to experimental modal analysis and identification methods An improved, more physical presentation of wave propagation phenomena A comprehensive presentation of current practice for solving large eigenproblems, focusing on the efficient linear solution of large, sparse and possibly singular systems A deeply revised description of time integration schemes, providing framework for the rigorous accuracy/stability analysis of now widely used algorithms such as HHT and Generalized-α Solved exercises and end of chapter homework problems A companion website hosting supplementary material
Новинка

4489 руб.

Regression analysis can be used to establish causal relationships between factors and the response variable. However, in order to be able to do so, economic theory must be used to provide the causal relationship and then regression analysis is applied to verify the validity of the theory. Regression analysis is the most commonly used analytical tool and can be understood without complex mathematics. This book simplifies and demystifies regression analysis. All the examples are from economics and in almost all the cases, real data is used to show the application of the method. By limiting the use of mathematical symbols, the author enables a logical reader to learn regression, without shortchanging the subject. The book is targeted to all business students and executives who need to understand the concept of regression for practical and professional purposes.
Новинка

6758.83 руб.

Explore the evolution of organization theory in the health care sector Advances in Health Care Organization Theory, 2nd Edition, introduces students in health administration to the fields of organization theory and organizational behavior and their application to the management of health care organizations. The book explores the major health care developments over the past decade and demonstrates the contribution of organization theory to a deeper understanding of the changes in the delivery system, including the historic passage of the Patient Protection and Affordable Care Act of 2010. Taking both a micro and macro view, editors Stephen S. Mick and Patrick D. Shay, collaborate with a roster of contributing experts to compile a comprehensive volume that covers the latest in organization theory. Topics include: Institutional and neo-institutional theory Patient-centered practices and organizational culture change Design and implementation of patient-centered care management teams Hospital-based clusters as new organizational structures Application of social network theory to health care
Новинка

12404.43 руб.

Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and then sets forth the scope of DSM in Part One. Part Two introduces the discrepancy principle, and Part Three offers examples of numerical applications of DSM to solve a broad range of problems in science and engineering. Additional featured topics include: General nonlinear operator equations Operators satisfying a spectral assumption Newton-type methods without inversion of the derivative Numerical problems arising in applications Stable numerical differentiation Stable solution to ill-conditioned linear algebraic systems Throughout the chapters, the authors employ the use of figures and tables to help readers grasp and apply new concepts. Numerical examples offer original theoretical results based on the solution of practical problems involving ill-conditioned linear algebraic systems, and stable differentiation of noisy data. Written by internationally recognized authorities on the topic, Dynamical Systems Method and Applications is an excellent book for courses on numerical analysis, dynamical systems, operator theory, and applied mathematics at the graduate level. The book also serves as a valuable resource for professionals in the fields of mathematics, physics, and engineering.
Новинка

4964 руб.

“For anyone interested in the rapidly developing field of string theory (graduate students with the proper physics background), Siegel's book is a particularly good introduction.”>/p>Choice, USA“Siegel has played a major role in the application of BRST formalisms for quantization to string theory … Siegel's book is of great interest for those who intend to do research in string field theory.”Foundations of Physics, USA This volume covers the most up-to-date findings on string field theory. It is presented in a new approach as a result of insights gained from the theory. This includes the use of a universal method for treating free field theories, which allows the derivation of a single, simple, free, local, Poincare-invariant, gauge-invariant action that can be applied directly to any fields.
Новинка

10071.55 руб.

An introductory course in summability theory for students, researchers, physicists, and engineers In creating this book, the authors’ intent was to provide graduate students, researchers, physicists, and engineers with a reasonable introduction to summability theory. Over the course of nine chapters, the authors cover all of the fundamental concepts and equations informing summability theory and its applications, as well as some of its lesser known aspects. Following a brief introduction to the history of summability theory, general matrix methods are introduced, and the Silverman-Toeplitz theorem on regular matrices is discussed. A variety of special summability methods, including the Nörlund method, the Weighted Mean method, the Abel method, and the (C, 1) – method are next examined. An entire chapter is devoted to a discussion of some elementary Tauberian theorems involving certain summability methods. Following this are chapters devoted to matrix transforms of summability and absolute summability domains of reversible and normal methods; the notion of a perfect matrix method; matrix transforms of summability and absolute summability domains of the Cesàro and Riesz methods; convergence and the boundedness of sequences with speed; and convergence, boundedness, and summability with speed. • Discusses results on matrix transforms of several matrix methods • The only English-language textbook describing the notions of convergence, boundedness, and summability with speed, as well as their applications in approximation theory • Compares the approximation orders of Fourier expansions in Banach spaces by different matrix methods • Matrix transforms of summability domains of regular perfect matrix methods are examined • Each chapter contains several solved examples and end-of-chapter exercises, including hints for solutions An Introductory Course in Summability Theory is the ideal first text in summability theory for graduate students, especially those having a good grasp of real and complex analysis. It is also a valuable reference for mathematics researchers and for physicists and engineers who work with Fourier series, Fourier transforms, or analytic continuation. ANTS AASMA, PhD, is Associate Professor of Mathematical Economics in the Department of Economics and Finance at Tallinn University of Technology, Estonia. HEMEN DUTTA, PhD, is Senior Assistant Professor of Mathematics at Gauhati University, India. P.N. NATARAJAN, PhD, is Formerly Professor and Head of the Department of Mathematics, Ramakrishna Mission Vivekananda College, Chennai, Tamilnadu, India.
Новинка

10458.89 руб.

This book covers instantaneous power theory as well as the importance of design of shunt, series, and combined shunt-series power active filters and hybrid passive-active power filters Illustrates pioneering applications of the p-q theory to power conditioning, which highlights distinct differences from conventional theories Explores p-q-r theory to give a new method of analyzing the different powers in a three-phase circuit Provides exercises at the end of many chapters that are unique to the second edition
Новинка

11620.18 руб.

Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics
Новинка

4502 руб.

We show how to set up a Cellular Dynamical Mean Field Theory for the Holstein's polaron problem using the exact solution of a cluster of n sites embedded in a Weiss's field. We show that a restricted basis, that allows excitations of phonons only for n sites at a time, reproduces exactly the equations of the n-site Dynamical Mean Field Theory, and enables to check the proposed decoupling scheme of the Green's functions via Exact Numerical Diagonalizations. We introduce a real space formulation of the Cellular Dynamical Mean Field Theory that applies to any lattice with or without periodic boundary conditions and that allows to partition the lattice into different kinds of clusters.
Новинка

11232.84 руб.

Advanced Graph Theory focuses on some of the main notions arising in graph theory with an emphasis from the very start of the book on the possible applications of the theory and the fruitful links existing with linear algebra. The second part of the book covers basic material related to linear recurrence relations with application to counting and the asymptotic estimate of the rate of growth of a sequence satisfying a recurrence relation.
Новинка

8134.86 руб.

In recent years, there has been a growing debate, particularly in the UK and Europe, over the merits of using discrete-event simulation (DES) and system dynamics (SD); there are now instances where both methodologies were employed on the same problem. This book details each method, comparing each in terms of both theory and their application to various problem situations. It also provides a seamless treatment of various topics–theory, philosophy, detailed mechanics, practical implementation–providing a systematic treatment of the methodologies of DES and SD, which previously have been treated separately.
Новинка

4039 руб.

In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they won the first place almost every year.The authors are coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book explains many basic techniques for proving inequalities such as direct comparison, method of magnifying and reducing, substitution method, construction method, and so on.
Новинка

7252 руб.

The current state of a plstroyeniye of computing process in the information and measuring and operating systems (IMOS) of the flexible automated productions (FAP) is considered. The mathematical model of optimization of computing process in the top contour of IMOS of FAP is offered. Application of a method of branches and borders for the solution of problems of optimization of computing process, and also the theory of a duality for an assessment of limits of the decision and definition of an order of branching of variables in IMOS of FAP is described. Features of application of a gradient method of Errou-Gurvits for an assessment of limits of the decision in a method of branches and borders and results of experimental check of the developed mathematical models of optimization of vychmslitelny process are presented to IMOS of FAP. Methodical recommendations about use of mathematical apparatus of optimization of computing process in IMOS of FAP are made.
Новинка

12007.52 руб.

Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions comprehensively covers the theoretical background of asymptotic approaches and their use in solving mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions. The first part of this book introduces the theory and application of asymptotic methods and includes a series of approaches that have been omitted or not rigorously treated in the existing literature. These lesser known approaches include the method of summation and construction of the asymptotically equivalent functions, methods of small and large delta, and the homotopy perturbations method. The second part of the book contains original results devoted to the solution of the mixed problems of the theory of plates, including statics, dynamics and stability of the studied objects. In addition, the applicability of the approaches presented to other related linear or nonlinear problems is addressed. Key features: • Includes analytical solving of mixed boundary value problems • Introduces modern asymptotic and summation procedures • Presents asymptotic approaches for nonlinear dynamics of rods, beams and plates • Covers statics, dynamics and stability of plates with mixed boundary conditions • Explains links between the Adomian and homotopy perturbation approaches Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions is a comprehensive reference for researchers and practitioners working in the field of Mechanics of Solids and Mechanical Engineering, and is also a valuable resource for graduate and postgraduate students from Civil and Mechanical Engineering.
Новинка

3339 руб.

This book in categorial proof theory formulates in terms of category theory a generalization close to linear algebra of the notions of distributive lattice and Boolean algebra. These notions of distributive lattice category and Boolean category codify a plausible nontrivial notion of identity of proofs in classical propositional logic, which is in accordance with Gentzen's cut-elimination procedure for multiple-conclusion sequents modified by admitting new principles called union of proofs and zero proofs. It is proved that these notions of category are coherent in the sense that there is a faithful structure-preserving functor from freely generated distributive lattice categories and Boolean categories into the category whose arrows are relations between finite ordinals-a category related to generality of proofs and to the notion of natural transformation. These coherence results yield a simple decision procedure for equality of proofs. Coherence in the same sense is also proved for various more general notions of category that enter into the notions of distributive lattice category and Boolean category. Some of these coherence results, like those for monoidal and symmetric monoidal categories are well known, but are here presented in a new light. The key to this categorification of the proof theory of classical propositional logic is distribution of conjunction over disjunction that is not an isomorphism as in cartesian closed categories.
Новинка

807 руб.

Эта книга — репринт оригинального издания, созданный на основе электронной копии высокого разрешения, которую очистили и обработали вручную, сохранив структуру и орфографию оригинального издания. Редкие, забытые и малоизвестные книги, изданные с петровских времен до наших дней, вновь доступны в виде печатных книг.
Новинка

2102 руб.

A monograph about the Group Focal Conflict Theory of Whitaker and Lieberman. Describes an still actual group therapy method that integrates psycho dynamic and group dynamic approaches in group therapy. Detailed description of the functioning of therapy groups and the role of group therapists.
Новинка

750 руб.

Eye witness testimony, training, driving, and display design: these are just a few of the real-world domains in which depend on undivided attention. Emphasizing the link between theory and application, Applied Attention Theory provides a deep understanding of how theories of attention, developed from laboratory-based psychological research, can inform our understanding of everyday human performance in a wide number of applications and environments. The basic theories discussed concern divided, focused, and selective attention, and areas of application include mental workload measurement, multi-tasking, distracted driving, complex display design, education, and the training of attentional skills.Издательство - CRC Press
Новинка

10071.55 руб.

This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.
Новинка

2902 руб.

Kazimierz Dabrowski’s Theory of Positive Disintegration (TPD), which includes the widely known “overexcitabilities,” is one of the most influential theories in gifted education. This groundbreaking book, edited by Dr. Sal Mendaglio, brings together information from leading professionals, many of whom knew Dr. Dabrowski himself, and provides readers with a diversity of perspectives on TPD. It summarizes the research and application of TPD and compares it to other theories of personality and psychological development. This is a thought-provoking textbook that provides powerful insights and information not previously published about Dabrowski’s theory.
Новинка

7359.44 руб.

A systematic outline of the basic theory of oscillations, combining several tools in a single textbook. The author explains fundamental ideas and methods, while equally aiming to teach students the techniques of solving specific (practical) or more complex problems. Following an introduction to fundamental notions and concepts of modern nonlinear dynamics, the text goes on to set out the basics of stability theory, as well as bifurcation theory in one and two-dimensional cases. Foundations of asymptotic methods and the theory of relaxation oscillations are presented, with much attention paid to a method of mappings and its applications. With each chapter including exercises and solutions, including computer problems, this book can be used in courses on oscillation theory for physics and engineering students. It also serves as a good reference for students and scientists in computational neuroscience.
Новинка

6414 руб.

Number theory is a subdiscipline of math which studies the properties of numbers. "Study on Number Theory" section includes basic theory and special explored section The section of basic theories is a supplement to the main part of Elementary number theory, including, Pythagoras equation, congruence theory, unitary congruence equation, quadratic congruence equation and the original root and so on, and the basic theories also make considerable improvement for the above. May this old and promising subject become a part of middle-school math teaching. The part of thematic Exploratory includes the following chapters: a concrete explanation of Fermat conjecture; the primality test for Fermat Number Fn；the application of congruence equations; the distribution of related prime numbers; primes pair of even numbers; the fundamental problems of transfinite numbers.
Новинка

8739 руб.

Liquid chromatography-tandem mass spectrometry (LCMS/MS) is one of the most advanced techniques in the development of Methods for estimation of drugs in biological fluids. The current work includes basic techniques in Liquid Chromatography, Mass Spectrometry, Sample Preparation in bioanalyses, development of bioanalytical method for the quantitative estimation of Montelukast in human plasma and validating it according to FDA guidelines. The method finds its application in biequivalence studies of Montelukast, a cysteinyl leukotriene receptor antagonist used in the treatment of asthma and other allergic conditions.
Новинка

2914 руб.

Determination of Speed of Gravity as 2.5E+10 Kms/sec. Determination of maximum time that Moon has been moving away from the Earth as 6.02 billion years. Propositions for energy, matter and gravity. Theory for Gravity and revision of Newton's law to account for massive bodies. Alternative to Big Bang theory and how galaxies work. Theory to where energy in light goes as it travels for billions of years. A proposed method to "row" through the aether. A method to create or measure any angle using a computer, compass and ruler. A new way to measure longitude. This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.