Новинка

10224.26 руб.

This book offers advanced students, in 7 volumes, successively characterization tools phases, the study of all types of phase, liquid, gas and solid, pure or multi-component, process engineering, chemical and electrochemical equilibria, the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention is given to the rigor of mathematical developments. This book focuses on solid phases.
Новинка

11126.61 руб.

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.
Новинка

11126.61 руб.

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments.
Новинка

8613.91 руб.

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This volume, the final of the Chemical Thermodynamics Set, offers an in-depth examination of chemical thermodynamics. The author uses systems of liquids, vapors, solids and mixtures of these in thermodynamic approaches to determine the influence of the temperature and pressure on the surface tension and its consequences on specific heat capacities and latent heats. Electro-capillary phenomena, the thermodynamics of cylindrical capillary and small volume-phases are also discussed, along with a thermodynamic study of the phenomenon of nucleation of a condensed phase and the properties of thin liquid films. The final chapters discuss the phenomena of physical adsorption and chemical adsorption of gases by solid surfaces. In an Appendix, applications of physical adsorption for the determination of the specific areas of solids and their porosity are given.
Новинка

7439.29 руб.

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This fifth volume is devoted to the study of transformations and equilibria between phases. First- and second-order pure phase transformations are presented in detail, just as with the macroscopic and microscopic approaches of phase equilibria. In the presentation of binary systems, the thermodynamics of azeotropy and demixing are discussed in detail and applied to strictly-regular solutions. Eutectic and peritectic points are examined, as well as the reactions that go with them. The study of ternary systems then introduces the concepts of ternary azeotropes and eutectics. For each type of solid-liquid system, the interventions of definite compounds with or without congruent melting are taken into account. The particular properties of the different notable points of a diagram are also demonstrated.
Новинка

10963.16 руб.

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been paid to the rigor of mathematical developments. This sixth volume is made up of two parts. The first part focuses on the study of ionic equilibria in water or non-aqueous solvents. The following are then discussed in succession: the dissociation of electrolytes, solvents and solvation, acid-base equilibria, formation of complexes, redox equilibria and the problems of precipitation. Part 2 discusses electrochemical thermodynamics, with the study of two groups: electrodes and electrochemical cells. The book concludes with the study of potential-pH diagrams and their generalization in an aqueous or non-aqueous medium.
Новинка

12137.79 руб.

Volume 1 presents successively an introduction followed by 10 chapters and a conclusion: – A logistic approach – an overview of operations research – The basics of graph theory – calculating optimal routes – Dynamic programming – planning and scheduling with PERT and MPM; – the waves of calculations in a network; – spanning trees and touring; – linear programming – modeling of road traffic
Новинка

7703.04 руб.

Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as “Mesoscopic” noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: • Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. • Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. • Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. • Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage.
Новинка

10180.82 руб.

The book offers advanced students, in 7 volumes, successively characterization tools phases, the study of all types of phase, liquid, gas and solid, pure or multi-component, process engineering, chemical and electrochemical equilibria, the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention was given to the rigor of mathematical developments. Besides some very specialized books, the vast majority of existing works are intended for beginners and therefore limited in scope. There is no obvious connection between the two categories of books, general books does not go far enough in generalizing concepts to enable easy reading of advanced literature. The proposed project aims to give readers the ability to read highly specialized publications based on a more general presentation of the different fields of chemical thermodynamics. Consistency is ensured between the basic concepts and applications. So we find, in the same work, the tools, their use and comparison, for a more general macroscopic description and a microscopic description of a phase.
Новинка

16594.75 руб.

This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental results and how to calculate the kinetic laws in both homogeneous and heterogeneous systems. The following two chapters describe the main approximation modes to calculate these laws. Three chapters are devoted to elementary steps with the various classes, the principles used to write them and their modeling using the theory of the activated complex in gas and condensed phases. Three chapters are devoted to the particular areas of chemical reactions, chain reactions, catalysis and the stoichiometric heterogeneous reactions. Finally the non-steady-state processes of combustion and explosion are treated in the final chapter.
Новинка

12780.32 руб.

This book provides the reader with a solid understanding of the fundamental modeling of photovoltaic devices. After the material independent limit of photovoltaic conversion, the readers are introduced to the most well-known theory of «classical» silicon modeling. Based on this, for each of the most important PV materials, their performance under different conditions is modeled. This book also covers different modeling approaches, from very fundamental theoretic investigations to applied numeric simulations based on experimental values. The book concludes wth a chapter on the influence of spectral variations. The information is supported by providing the names of simulation software and basic literature to the field. The information in the book gives the user specific application with a solid background in hand, to judge which materials could be appropriate as well as realistic expectations of the performance the devices could achieve.
Новинка

5349.33 руб.

Political Science has traditionally employed empirical research and analytical resources to understand, explain and predict political phenomena. One of the long-standing criticisms against empirical modeling targets the static perspective provided by the model-invariant paradigm. In political science research, this issue has a particular relevance since political phenomena prove sophisticated degrees of context-dependency whose complexity could be hardly captured by traditional approaches. To cope with the complexity challenge, a new modeling paradigm was needed. This book is concerned with this challenge. Moreover, the book aims to reveal the power of computational modeling of political attitudes to reinforce the political methodology in facing two fundamental challenges: political culture modeling and polity modeling. The book argues that an artificial polity model as a powerful research instrument could hardly be effective without the political attitude and, by extension, the political culture computational and simulation modeling theory, experiments and practice. This book: Summarizes the state of the art in computational modeling of political attitudes, with illustrations and examples featured throughout. Explores the different approaches to computational modeling and how the complexity requirements of political science should determine the direction of research and evaluation methods. Addresses the newly emerging discipline of computational political science. Discusses modeling paradigms, agent-based modeling and simulation, and complexity-based modeling. Discusses model classes in the fundamental areas of voting behavior and decision-making, collective action, ideology and partisanship, emergence of social uprisings and civil conflict, international relations, allocation of public resources, polity and institutional function, operation, development and reform, political attitude formation and change in democratic societies. This book is ideal for students who need a conceptual and operational description of the political attitude computational modeling phases, goals and outcomes in order to understand how political attitudes could be computationally modeled and simulated. Researchers, Governmental and international policy experts will also benefit from this book.
Новинка

14313.96 руб.

This book provides a description of the generalized two layer surface complexation model, data treatment procedures, and thermodynamic constants for sorption of metal cations and anions on gibbsite, the most common form of aluminum oxide found in nature and one of the most abundant minerals in soils, sediments, and natural waters. The book provides a synopsis of aluminum oxide forms and a clearly defined nomenclature. Compilations of available data for sorption of metal cations and anions on gibbsite are presented, and the results of surface complexation model fitting of these data are given. The consistency of the thermodynamic surface complexation constants extracted from the data is examined through development of linear free energy relationships which are also used to predict thermodynamic constants for ions for which insufficient data are available to extract constants. The book concludes with a comparison of constants extracted from data for sorption on gibbsite with those determined previously for hydrous ferric oxide (HFO), hydrous manganese oxide (HMO), and goethite. The overall objective of this book is the development and presentation of an internally consistent thermodynamic database for sorption of inorganic cations and anions on gibbsite, an abundant and reactive mineral in soils, sediments, and aquatic systems. Its surface has a high affinity for sorption of metal cations and anions, including radionuclides. The gibbsite database will enable simulation and prediction of the influence of sorption on the fate of these chemical species in natural systems and treatment processes in which aluminum oxides are abundant. It thus will help to advance the practical application of surface complexation modeling.
Новинка

11742.53 руб.

This book is the first to combine computational material science and modeling of molecular solid states for pharmaceutical industry applications. • Provides descriptive and applied state-of-the-art computational approaches and workflows to guide pharmaceutical solid state chemistry experiments and to support/troubleshoot API solid state selection • Includes real industrial case examples related to application of modeling methods in problem solving • Useful as a supplementary reference/text for undergraduate, graduate and postgraduate students in computational chemistry, pharmaceutical and biotech sciences, and materials science
Новинка

8719.41 руб.

This book provides an introduction to basic thermodynamic engine cycle simulations, and provides a substantial set of results. Key features includes comprehensive and detailed documentation of the mathematical foundations and solutions required for thermodynamic engine cycle simulations. The book includes a thorough presentation of results based on the second law of thermodynamics as well as results for advanced, high efficiency engines. Case studies that illustrate the use of engine cycle simulations are also provided.
Новинка

12137.79 руб.

In this comprehensive yet compact monograph, Michel W. Barsoum, one of the pioneers in the field and the leading figure in MAX phase research, summarizes and explains, from both an experimental and a theoretical viewpoint, all the features that are necessary to understand and apply these new materials. The book covers elastic, electrical, thermal, chemical and mechanical properties in different temperature regimes. By bringing together, in a unifi ed, self-contained manner, all the information on MAX phases hitherto only found scattered in the journal literature, this one-stop resource offers researchers and developers alike an insight into these fascinating materials.
Новинка

14252.26 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

14313.96 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

10024.06 руб.

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 200. Trajectory-based (“Lagrangian”) atmospheric transport and dispersion modeling has gained in popularity and sophistication over the previous several decades. It is common practice now for researchers around the world to apply Lagrangian models to a wide spectrum of issues. Lagrangian Modeling of the Atmosphere is a comprehensive volume that includes sections on Lagrangian modeling theory, model applications, and tests against observations. Published by the American Geophysical Union as part of the Geophysical Monograph Series. Comprehensive coverage of trajectory-based atmospheric dispersion modeling Important overview of a widely used modeling tool Sections look at modeling theory, application of models, and tests against observations
Новинка

15270.86 руб.

The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This volume explores the following topics: Thermodynamic Perturbation Theory for Associating Molecules Path Integrals and Effective Potentials in the Study of Monatomic Fluids at Equilibrium Sponteneous Symmetry Breaking in Matter Induced by Degeneracies and Pseudogeneracies Mean-Field Electrostatics Beyond the Point-Charge Description First Passage Processes in Cellular Biology Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydroen-Bonded Systems
Новинка

11010.74 руб.

An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts in the field, the book's fluid presentation builds from topic to topic and provides the foundation and theoretical underpinnings of modeling and simulation. First, an introduction to the topic is presented, including related terminology, examples of model development, and various domains of modeling and simulation. Subsequent chapters develop the necessary mathematical background needed to understand modeling and simulation topics, model types, and the importance of visualization. In addition, Monte Carlo simulation, continuous simulation, and discrete event simulation are thoroughly discussed, all of which are significant to a complete understanding of modeling and simulation. The book also features chapters that outline sophisticated methodologies, verification and validation, and the importance of interoperability. A related FTP site features color representations of the book's numerous figures. Modeling and Simulation Fundamentals encompasses a comprehensive study of the discipline and is an excellent book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of computational statistics, engineering, and computer science who use statistical modeling techniques.
Новинка

10381.55 руб.

A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
Новинка

10572.36 руб.

A thermodynamic system is defined according to its environment and its compliance. This book promotes the classification of materials from generalized thermodynamics outside the equilibrium state and not solely according to their chemical origin. The author goes beyond standard classification of materials and extends it to take into account the living, ecological, economic and financial systems in which they exist: all these systems can be classified according to their deviation from an ideal situation of thermodynamic equilibrium. The concepts of dynamic complexity and hierarchy, emphasizing the crucial role played by cycles and rhythms, then become fundamental. Finally, the limitations of the uniqueness of this description that depend on thermodynamic foundations based on the concepts of energy and entropy are discussed in relation to the cognitive sciences.
Новинка

9397 руб.

Provides a unique and methodologically consistent treatment of various areas of fuzzy modeling and includes the results of mathematical fuzzy logic and linguistics This book is the result of almost thirty years of research on fuzzy modeling. It provides a unique view of both the theory and various types of applications. The book is divided into two parts. The first part contains an extensive presentation of the theory of fuzzy modeling. The second part presents selected applications in three important areas: control and decision-making, image processing, and time series analysis and forecasting. The authors address the consistent and appropriate treatment of the notions of fuzzy sets and fuzzy logic and their applications. They provide two complementary views of the methodology, which is based on fuzzy IF-THEN rules. The first, more traditional method involves fuzzy approximation and the theory of fuzzy relations. The second method is based on a combination of formal fuzzy logic and linguistics. A very important topic covered for the first time in book form is the fuzzy transform (F-transform). Applications of this theory are described in separate chapters and include image processing and time series analysis and forecasting. All of the mentioned components make this book of interest to students and researchers of fuzzy modeling as well as to practitioners in industry. Features: Provides a foundation of fuzzy modeling and proposes a thorough description of fuzzy modeling methodology Emphasizes fuzzy modeling based on results in linguistics and formal logic Includes chapters on natural language and approximate reasoning, fuzzy control and fuzzy decision-making, and image processing using the F-transform Discusses fuzzy IF-THEN rules for approximating functions, fuzzy cluster analysis, and time series forecasting Insight into Fuzzy Modeling is a reference for researchers in the fields of soft computing and fuzzy logic as well as undergraduate, master and Ph.D. students. Vilém Novák, D.Sc. is Full Professor and Director of the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. Irina Perfilieva, Ph.D. is Full Professor, Senior Scientist, and Head of the Department of Theoretical Research at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. Antonín Dvorák, Ph.D. is Associate Professor, and Senior Scientist at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic.
Новинка

6343.42 руб.

The topic of this book is the modeling of data uncertainty and knowledge for a health engineering problem such as the biomechanics of the musculoskeletal system. This is the first book on this subject. It begins with the state of the art in related topics such as data uncertainty, knowledge modeling, and the biomechanics of the musculoskeletal system, followed by fundamental and theoretical aspects of this field. Clinically relevant applications of musculoskeletal system modeling are then introduced. The book finishes with a chapter on practical software and tools for knowledge modeling and reasoning purposes.
Новинка

12269.11 руб.

Explore the military and combat applications of modeling and simulation Engineering Principles of Combat Modeling and Distributed Simulation is the first book of its kind to address the three perspectives that simulation engineers must master for successful military and defense related modeling: the operational view (what needs to be modeled); the conceptual view (how to do combat modeling); and the technical view (how to conduct distributed simulation). Through methods from the fields of operations research, computer science, and engineering, readers are guided through the history, current training practices, and modern methodology related to combat modeling and distributed simulation systems. Comprised of contributions from leading international researchers and practitioners, this book provides a comprehensive overview of the engineering principles and state-of-the-art methods needed to address the many facets of combat modeling and distributed simulation and features the following four sections: Foundations introduces relevant topics and recommended practices, providing the needed basis for understanding the challenges associated with combat modeling and distributed simulation. Combat Modeling focuses on the challenges in human, social, cultural, and behavioral modeling such as the core processes of «move, shoot, look, and communicate» within a synthetic environment and also equips readers with the knowledge to fully understand the related concepts and limitations. Distributed Simulation introduces the main challenges of advanced distributed simulation, outlines the basics of validation and verification, and exhibits how these systems can support the operational environment of the warfighter. Advanced Topics highlights new and developing special topic areas, including mathematical applications fo combat modeling; combat modeling with high-level architecture and base object models; and virtual and interactive digital worlds. Featuring practical examples and applications relevant to industrial and government audiences, Engineering Principles of Combat Modeling and Distributed Simulation is an excellent resource for researchers and practitioners in the fields of operations research, military modeling, simulation, and computer science. Extensively classroom tested, the book is also ideal for courses on modeling and simulation; systems engineering; and combat modeling at the graduate level.
Новинка

11354.7 руб.

Volume 3 begins with an introduction to which are added four chapters focused on modeling and flow simulation in an environment in 2 or 3 dimensions (2D or 3D). They deal with different cases taken from situations found in the field. A conclusion comes close this third book: – The different software used in this third volume; – Computer simulation of discrete flows; – Mixed flow simulation; – Flows in 3D and the evacuation simulation; – Flows in 3D for conveying and storage The conclusion discusses the future developments of the software and their integration into society. At the end of each volume is a bibliography and a list of web links. There is also a glossary explaining some abbreviations, acronyms and some very specific terminology of logistics and operations research.
Новинка

3881 руб.

Autodesk Inventor 2009 for Designers is a comprehensive textbook that introduces the users to Autodesk Inventor 2009 software, the feature based 3D parametric solid modeling software. All environments of Autodesk Inventor 2009 are covered in this textbook with thorough explanation of commands, options, and their applications to create real-world products. The mechanical engineering industry examples that are used as tutorials and the related additional exercises at the end of each chapter help the user to understand the design techniques used in the industry to design a product. After reading the textbook, the user will be able to create solid parts, sheet metal parts, assemblies, weldments, drawing views with bill of materials, and presentation views to animate the assemblies. Also, the user will learn the editing techniques that are essential to make a successful design. In this book, the author emphasizes on the solid modeling techniques that improve the productivity and efficiency of the user.Salient Features of the Textbook Consists of 17 pedagogical sequenced chapters covering the Sketching, Modeling, Assembly, Drafting, and Sheet Metal environments of Autodesk Inventor 2009. The first page of every chapter summarizes the topics that will be covered in it. Real-world projects and examples focusing on industry experience. Step-by-step examples that guide the user through the learning process. Additional information is provided throughout the textbook in the form of tips ...
Новинка

12579.77 руб.

In Optoelectronic Integrated Circuit Design and Device Modeling, Professor Jianjun Gao introduces the fundamentals and modeling techniques of optoelectronic devices used in high-speed optical transmission systems. Gao covers electronic circuit elements such as FET, HBT, MOSFET, as well as design techniques for advanced optical transmitter and receiver front-end circuits. The book includes an overview of optical communication systems and computer-aided optoelectronic IC design before going over the basic concept of laser diodes. This is followed by modeling and parameter extraction techniques of lasers and photodiodes. Gao covers high-speed electronic semiconductor devices, optical transmitter design, and optical receiver design in the final three chapters. Addresses a gap within the rapidly growing area of transmitter and receiver modeling in OEICs Explains diode physics before device modeling, helping readers understand their equivalent circuit models Provides comprehensive explanations for E/O and O/E conversions done with laser and photodiodes Covers an extensive range of devices for high-speed applications Accessible for students new to microwaves Presentation slides available for instructor use This book is primarily aimed at practicing engineers, researchers, and post-graduates in the areas of RF, microwaves, IC design, photonics and lasers, and solid state devices. The book is also a strong supplement for senior undergraduates taking courses in RF and microwaves. Lecture materials for instructors available at www.wiley.com/go/gao
Новинка

196 руб.

В пособии представлены возможности программы Thermo-Calc, которая позволяет проводить термодинамические расчеты двойных, тройных и многокомпонентных фазовых диаграмм, фазового состава сплавов, состава фаз, неравновесной кристаллизации. Показано применение программы для расчета фазового состава промышленных сплавов, а также даны рекомендации по выполнению курсовой работы. Содержание пособия соответствует программе дисциплины «Thermodynamic computations and analysis of the phase diagrams of multicomponent systems» для студентов, обучающихся по магистерской программе «Advanced Metallic Materials and Engineering».
Новинка

18560.96 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

18481.2 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

8613.91 руб.

This book introduces the Process for Attack Simulation & Threat Analysis (PASTA) threat modeling methodology. It provides an introduction to various types of application threat modeling and introduces a risk-centric methodology aimed at applying security countermeasures that are commensurate to the possible impact that could be sustained from defined threat models, vulnerabilities, weaknesses, and attack patterns. This book describes how to apply application threat modeling as an advanced preventive form of security. The authors discuss the methodologies, tools, and case studies of successful application threat modeling techniques. Chapter 1 provides an overview of threat modeling, while Chapter 2 describes the objectives and benefits of threat modeling. Chapter 3 focuses on existing threat modeling approaches, and Chapter 4 discusses integrating threat modeling within the different types of Software Development Lifecycles (SDLCs). Threat modeling and risk management is the focus of Chapter 5. Chapter 6 and Chapter 7 examine Process for Attack Simulation and Threat Analysis (PASTA). Finally, Chapter 8 shows how to use the PASTA risk-centric threat modeling process to analyze the risks of specific threat agents targeting web applications. This chapter focuses specifically on the web application assets that include customer’s confidential data and business critical functionality that the web application provides. • Provides a detailed walkthrough of the PASTA methodology alongside software development activities, normally conducted via a standard SDLC process • Offers precise steps to take when combating threats to businesses • Examines real-life data breach incidents and lessons for risk management Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis is a resource for software developers, architects, technical risk managers, and seasoned security professionals.
Новинка

13838.14 руб.

Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences.
Новинка

10493.61 руб.

A comprehensive and detailed treatment of the program SIMULINK® that focuses on SIMULINK® for simulations in Digital and Wireless Communications Modeling of Digital Communication Systems Using SIMULINK® introduces the reader to SIMULINK®, an extension of the widely-used MATLAB modeling tool, and the use of SIMULINK® in modeling and simulating digital communication systems, including wireless communication systems. Readers will learn to model a wide selection of digital communications techniques and evaluate their performance for many important channel conditions. Modeling of Digital Communication Systems Using SIMULINK® is organized in two parts. The first addresses Simulink® models of digital communications systems using various modulation, coding, channel conditions and receiver processing techniques. The second part provides a collection of examples, including speech coding, interference cancellation, spread spectrum, adaptive signal processing, Kalman filtering and modulation and coding techniques currently implemented in mobile wireless systems. Covers case examples, progressing from basic to complex Provides applications for mobile communications, satellite communications, and fixed wireless systems that reveal the power of SIMULINK modeling Includes access to useable SIMULINK® simulations online Covering both the use of SIMULINK® in digital communications and the complex aspects of wireless communication systems, Modeling of Digital Communication Systems UsingSIMULINK® is a great resource for both practicing engineers and students with MATLAB experience.
Новинка

9788.54 руб.

A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
Новинка

18560.96 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

18560.96 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

18560.96 руб.

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.
Новинка

5951.13 руб.

In the field of aeronautical dynamics, this book offers readers a design tool which enables them to solve the different problems that can occur during the planning stage of a private project. The authors present a system for the modeling, design and calculation of the flying qualities of airplanes and drones, with a complete mathematical model by Matlab/Simulink. As such, this book may be useful for design engineers as well as for keen airplane amateurs. The authors expound the various phases involved in the design process of an airplane, starting with the formulation of a design tool, under the form of a 0D mathematical model (dimensionless, time dependent), before moving on to explore the behavior of the airplane under certain circumstances and offering insights into the optimization of airplane flying qualities. As validation of this model, they present a numerical result, drawn from data collected on an existing plane – the Concorde. The dimensional process is then explored and applied to a realistic drone project. Recommendations on the development of the principal characteristics of the plane (i.e. mass distribution, air load, wing span) are given. Contents 1. 0D Analytical Modeling of theAirplane Motions. 2. Design and Optimizationof an Unmanned Aerial Vehicle (UAV). 3. Organization of the Auto-Pilot. This book provides a description of the modeling, design, and calculation of the aeronautical qualities of airplanes and drones. Divided into several parts, this book first summarizes all the necessary theoretical developments about the equations of motions and trajectory calculations of the machine. It then goes on to describe practical building processes and considers piloting methods. The last part makes a comparison between theoretical calculations and measured recorded data of the real flying machine. Accompanied by a complete mathematical model in MATLAB/SIMULINK
Новинка

10414.86 руб.

Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: – propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; – ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and classical instruments of experimental and theoretical analysis such as population balances, and the distribution of residence and passage times; – laminar and turbulent flames, separating those which are premixed from those which are not and which do not exhibit the same mechanisms, but which also occur in the case of triple flames. Flows and Chemical Reactions in Homogeneous Mixtures provides information on dimensional analysis, statistical thermodynamics with coupling between internal modes and chemical reactions, the apparition and damping of fluid turbulence as well as its statistical processing, bifurcations, flames in a confined medium and diffusion. Contents 1. Flows in Nozzles. 2. Chemical Reactors. 3. Laminar and Turbulent Flames. Appendix 1. Dimensionless Numbers, Similarity. Appendix 2. Thermodynamic Functions. Appendix 3. Concepts of Turbulence. Appendix 4. Thermodynamic functions for a mixture in disequilibrium. Appendix 5. Notion of bifurcation. Appendix 6. Confined flame. Appendix 7. Limits of Validity of the First-order Expansions for Diffusion Flames. About the Authors Roger Prud’homme has been Emeritus Research Director at CNRS, in France, since 2004. His most recent research topics have included flames (premixed flame modeling and their behavior in microgravity), two phase flows (droplet combustion with condensation of the products, sound propagation in suspensions, vortex, chock wave structure) and the modeling of fluid interfaces. He has published 5 books, 7 contributions to volumes and 50 publications in international journals.
Новинка

7827.12 руб.

Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, industrial, and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.
Новинка

12583.7 руб.

Discover how the latest computational tools are building our understanding of particle interactions and leading to new applications With this book as their guide, readers will gain a new appreciation of the critical role that particle interactions play in advancing research and developing new applications in the biological sciences, chemical engineering, toxicology, medicine, and manufacturing technology The book explores particles ranging in size from cations to whole cells to tissues and processed materials. A focus on recreating complex, real-world dynamical systems helps readers gain a deeper understanding of cell and tissue mechanics, theoretical aspects of multiscale modeling, and the latest applications in biology and nanotechnology. Following an introductory chapter, Multiscale Modeling of Particle Interactions is divided into two parts: Part I, Applications in Nanotechnology, covers: Multiscale modeling of nanoscale aggregation phenomena: applications in semiconductor materials processing Multiscale modeling of rare events in self-assembled systems Continuum description of atomic sheets Coulombic dragging and mechanical propelling of molecules in nanofluidic systems Molecular dynamics modeling of nanodroplets and nanoparticles Modeling the interactions between compliant microcapsules and patterned surfaces Part II, Applications in Biology, covers: Coarse-grained and multiscale simulations of lipid bilayers Stochastic approach to biochemical kinetics In silico modeling of angiogenesis at multiple scales Large-scale simulation of blood flow in microvessels Molecular to multicellular deformation during adhesion of immune cells under flow Each article was contributed by one or more leading experts and pioneers in the field. All readers, from chemists and biologists to engineers and students, will gain new insights into how the latest tools in computational science can improve our understanding of particle interactions and support the development of novel applications across the broad spectrum of disciplines in biology and nanotechnology.
Новинка

18006.49 руб.

This book deals with various unique elements in the drug development process within chemical engineering science and pharmaceutical R&D. The book is intended to be used as a professional reference and potentially as a text book reference in pharmaceutical engineering and pharmaceutical sciences. Many of the experimental methods related to pharmaceutical process development are learned on the job. This book is intended to provide many of those important concepts that R&D Engineers and manufacturing Engineers should know and be familiar if they are going to be successful in the Pharmaceutical Industry. These include basic analytics for quantitation of reaction components– often skipped in ChE Reaction Engineering and kinetics books. In addition Chemical Engineering in the Pharmaceutical Industry introduces contemporary methods of data analysis for kinetic modeling and extends these concepts into Quality by Design strategies for regulatory filings. For the current professionals, in-silico process modeling tools that streamline experimental screening approaches is also new and presented here. Continuous flow processing, although mainstream for ChE, is unique in this context given the range of scales and the complex economics associated with transforming existing batch-plant capacity. The book will be split into four distinct yet related parts. These parts will address the fundamentals of analytical techniques for engineers, thermodynamic modeling, and finally provides an appendix with common engineering tools and examples of their applications.
Новинка

6182.94 руб.

This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.
Новинка

7707.52 руб.

This edited book is divided into three parts: Fundamentals of Medical and Health Sciences Modeling and Simulation introduces modeling and simulation in the medical and health sciences; Medical and Health Sciences Models provides the theoretical underpinnings of medical and health sciences modeling; and Modeling and Simulation Applications in Medical and Health Sciences focuses on teaching, training, and research applications. The book begins with a general discussion of modeling and simulation from the modeling and simulation discipline perspective. This discussion grounds the reader in common terminology. It also relates this terminology to concepts found in the medical and health care (MHC) area to help bridge the gap between developers and MHC practitioners. Three distinct modes of modeling and simulation are described: live, constructive, and virtual. The live approach explains the concept of using real (live) people employing real equipment for training purposes. The constructive mode is a means of engaging medical modeling and simulation. In constructive simulation, simulated people and simulated equipment are developed to augment real-world conditions for training or experimentation purposes. The virtual mode is perhaps the most fascinating as virtual operating rooms and synthetic training environments are being produced for practitioners and educators at break-neck speed. In this mode, real people are employing simulated equipment to improve physical skills and decision-making ability.
Новинка

11354.7 руб.

This book concentrates on modeling and numerical simulations of combustion in liquid rocket engines, covering liquid propellant atomization, evaporation of liquid droplets, turbulent flows, turbulent combustion, heat transfer, and combustion instability. It presents some state of the art models and numerical methodologies in this area. The book can be categorized into two parts. Part 1 describes the modeling for each subtopic of the combustion process in the liquid rocket engines. Part 2 presents detailed numerical methodology and several representative applications in simulations of rocket engine combustion.
Новинка

10102.07 руб.

Presents opportunities for making significant improvements in preventing harmful effects that can be caused by corrosion Describes concepts of molecular modeling in the context of materials corrosion Includes recent examples of applications of molecular modeling to corrosion phenomena throughout the text Details how molecular modeling can give insights into the multitude of interconnected and complex processes that comprise the corrosion of metals Covered applications include diffusion and electron transfer at metal/electrolyte interfaces, Monte Carlo simulations of corrosion, corrosion inhibition, interrogating surface chemistry, and properties of passive films Presents current challenges and likely developments in this field for the future
Новинка

9988.31 руб.

New advanced modeling methods for simulating the electromagnetic properties of complex three-dimensional electronic systems Based on the author's extensive research, this book sets forth tested and proven electromagnetic modeling and simulation methods for analyzing signal and power integrity as well as electromagnetic interference in large complex electronic interconnects, multilayered package structures, integrated circuits, and printed circuit boards. Readers will discover the state of the technology in electronic package integration and printed circuit board simulation and modeling. In addition to popular full-wave electromagnetic computational methods, the book presents new, more sophisticated modeling methods, offering readers the most advanced tools for analyzing and designing large complex electronic structures. Electrical Modeling and Design for 3D System Integration begins with a comprehensive review of current modeling and simulation methods for signal integrity, power integrity, and electromagnetic compatibility. Next, the book guides readers through: The macromodeling technique used in the electrical and electromagnetic modeling and simulation of complex interconnects in three-dimensional integrated systems The semi-analytical scattering matrix method based on the N-body scattering theory for modeling of three-dimensional electronic package and multilayered printed circuit boards with multiple vias Two- and three-dimensional integral equation methods for the analysis of power distribution networks in three-dimensional package integrations The physics-based algorithm for extracting the equivalent circuit of a complex power distribution network in three-dimensional integrated systems and printed circuit boards An equivalent circuit model of through-silicon vias Metal-oxide-semiconductor capacitance effects of through-silicon vias Engineers, researchers, and students can turn to this book for the latest techniques and methods for the electrical modeling and design of electronic packaging, three-dimensional electronic integration, integrated circuits, and printed circuit boards.
Новинка

14313.96 руб.

The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys – the simplified calculations for the bending of bars and their torsion. Other chapters are devoted to key topics such as the use of the “crystallographical theory of martensite” for SMA modeling, phenomenological and statistical investigations of SMAs, magneto-thermo-mechanical behavior of magnetic SMAs and the fracture mechanics of SMAs. Case studies are provided on the dimensioning of SMA elements offering the reader an additional useful framework on the subject. Contents 1. Some General Points about SMAs. 2. The World of Shape-memory Alloys. 3. Martensitic Transformation. 4. Thermodynamic Framework for the Modeling of Solid Materials. 5. Use of the “CTM” to Model SMAs. 6. Phenomenological and Statistical Approaches for SMAs. 7. Macroscopic Models with Internal Variables. 8. Design of SMA Elements: Case Studies. 9. Behavior of Magnetic SMAs. 10. Fracture Mechanics of SMAs. 11. General Conclusion. Appendix 1. Intrinsic Properties of Rotation Matrices. Appendix 2. “Twinning Equation” Demonstration. Appendix 3. Calculation of the Parameters a, n and Q from the “Twinning” Equation. Appendix 4. “Twinned” Austenite/Martensite Equation. About the Authors Christian Lexcellent is Emeritus Professor at the École National Supérieure de Mécanique et des Microtechniques de Besançon and a researcher in the Department of Applied Mechanics at FEMTO-ST in France. He is a specialist in the mechanics of materials and phase transition and has taught in the subjects of mechanics of continuum media and shape memory alloys. He is also a member of the International Committee of ESOMAT.
Новинка

7827.12 руб.

Contributions from three Focused Sessions that were part of the 34th International Conference on Advanced Ceramics and Composites (ICACC), in Daytona Beach, FL, January 24-29, 2010 are presented in this volume. The broad range of topics is captured by the Focused Session titles, which are listed as follows: FS1 – Geopolymers and other Inorganic Polymers; FS3 – Computational Design, Modeling Simulation and Characterization of Ceramics and Composites; and FS4 – Nanolaminated Ternary Carbides and Nitrides (MAX Phases). The session on Geopolymers and other Inorganic Polymers continues to attract growing attention from international researchers (USA, Australia, France, Germany, Italy, Czech Republic, and Viet Nam) and it is encouraging to see the variety of established and new applications being found for these novel and potentially useful materials. The session organizer gratefully acknowledges the support of the US Air Force Office of Scientific Research (AFOSR) through Dr. Joan Fuller. The AFOSR has continuously supported these conferences since the first meeting in Nashville, TN in 2003. Focused Session 3 was dedicated to design, modeling, simulation and characterization of ceramics and composites. 27 technical papers were presented on prediction of crystal structure and phase stability, characterization of interfaces and grain boundaries at atomic scale, optimization of electrical, optical and mechanical properties, modeling of defects and related properties, design of materials and components at different length scales, application of novel computational methods for processing. Four of these papers are included in this issue of CESP. Focused Session 4 was dedicated to MAX phases – a class of ternary carbides and nitrides with nanolaminated structure and general formula Mn+1AXn (where M is an early transition metal, A is an A-group element from IIIA to VIA, X is either C or N, and n=1, 2, 3 …). The MAX phases have attracted recently a lot of attention because they possess unique combination of metallic- and ceramic-like properties. In all, 30 technical papers were presented during this session. Four of these papers are included in this issue.
Новинка

9397 руб.

This book presents an in-depth guide to the subject matter and main points of hydrostructural pedology, as theorized for the first time. The authors focus on the underlying concepts, the purpose and role this field plays within agroenvironmental sciences. It is divided into two parts. Part 1 presents the theory behind hydrostructural pedology. The systemic approach applied to the soil is presented, showing how this leads to the thermodynamic formulation of water in the soil’s organized medium and to the systemic modeling of soil–water-coupling in natural or anthropic organizations. Part 2 presents the methodology to complement the first part. In it, the authors determine the hydrostructural characteristics of the pedostructure, characteristic parameters of equilibrium state equations and the hydrostructural functioning of the soil.
Новинка

5422.79 руб.

Master modeling and simulation using Modelica, the new powerful, highly versatile object-based modeling language Modelica, the new object-based software/hardware modeling language that is quickly gaining popularity around the world, offers an almost universal approach to high-level computational modeling and simulation. It handles a broad range of application domains, for example mechanics, electrical systems, control, and thermodynamics, and facilitates general notation as well as powerful abstractions and efficient implementations. Using the versatile Modelica language and its associated technology, this text presents an object-oriented, component-based approach that makes it possible for readers to quickly master the basics of computer-supported equation-based object-oriented (EOO) mathematical modeling and simulation. Throughout the text, Modelica is used to illustrate the various aspects of modeling and simulation. At the same time, a number of key concepts underlying the Modelica language are explained with the use of modeling and simulation examples. This book: Examines basic concepts such as systems, models, and simulations Guides readers through the Modelica language with the aid of several step-by-step examples Introduces the Modelica class concept and its use in graphical and textual modeling Explores modeling methodology for continuous, discrete, and hybrid systems Presents an overview of the Modelica Standard Library and key Modelica model libraries Readers will find plenty of examples of models that simulate distinct application domains as well as examples that combine several domains. All the examples and exercises in the text are available via DrModelica. This electronic self-teaching program, freely available on the text's companion website, guides readers from simple, introductory examples and exercises to more advanced ones. Written by the Director of the Open Source Modelica Consortium, Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica is recommended for engineers and students interested in computer-aided design, modeling, simulation, and analysis of technical and natural systems. By building on basic concepts, the text is ideal for students who want to learn modeling, simulation, and object orientation.
Новинка

6685.09 руб.

Optimal Portfolio Modeling is an easily accessible introduction to portfolio modeling for those who prefer an intuitive approach to this discipline. While early chapters provide engaging insights on the statistical properties of markets, this book quickly moves on to illustrate invaluable trading and risk control models based on popular programs such as Excel and the statistical modeling language R. This reliable resource presents modeling formulas that will allow you to effectively maximize the performance, minimize the drawdown, and manage the risk of your portfolio.
Новинка

14252.26 руб.

The numerical simulation of manufacturing processes and of their mechanical consequences is of growing interest in industry. However, such simulations need the modeling of couplings between several physical phenomena such as heat transfer, material transformations and solid or fluid mechanics, as well as to be adapted to numerical methodologies. This book gathers a state of the art on how to simulate industrial processes, what data are needed and what numerical simulation can bring. Assembling processes such as welding and friction stir welding, material removal processes, elaboration processes of composite structures, sintering processes, surface-finishing techniques, and thermo-chemical treatments are investigated. This book is the work of a group of researchers who have been working together in this field for more than 12 years. It should prove useful for both those working in industry and those studying the numerical methods applied to multiphysics problems encountered in manufacturing processes.
Новинка

12137.79 руб.

Mechanics and Physics of Porous Solids addresses the mechanics and physics of deformable porous materials whose porous space is filled by one or several fluid mixtures interacting with the solid matrix. Coussy uses the language of thermodynamics to frame the discussion of this topic and bridge the gap between physicists and engineers, and organises the material in such a way that individual phases are explored, followed by coupled problems of increasing complexity. This structure allows the reader to build a solid understanding of the physical processes occurring in the fluids and then porous solids. Mechanics and Physics of Porous Solids offers a critical reference on the physics of multiphase porous materials – key reading for engineers and researchers in structural and material engineering, concrete, wood and materials science, rock and soil mechanics, mining and oil prospecting, biomechanics. Provides a unique and methodologically consistent treatment of various areas of fuzzy modeling and includes the results of mathematical fuzzy logic and linguistics This book is the result of almost thirty years of research on fuzzy modeling. It provides a unique view of both the theory and various types of applications. The book is divided into two parts. The first part contains an extensive presentation of the theory of fuzzy modeling. The second part presents selected applications in three important areas: control and decision-making, image processing, and time series analysis and forecasting. The authors address the consistent and appropriate treatment of the notions of fuzzy sets and fuzzy logic and their applications. They provide two complementary views of the methodology, which is based on fuzzy IF-THEN rules. The first, more traditional method involves fuzzy approximation and the theory of fuzzy relations. The second method is based on a combination of formal fuzzy logic and linguistics. A very important topic covered for the first time in book form is the fuzzy transform (F-transform). Applications of this theory are described in separate chapters and include image processing and time series analysis and forecasting. All of the mentioned components make this book of interest to students and researchers of fuzzy modeling as well as to practitioners in industry. Features: Provides a foundation of fuzzy modeling and proposes a thorough description of fuzzy modeling methodology Emphasizes fuzzy modeling based on results in linguistics and formal logic Includes chapters on natural language and approximate reasoning, fuzzy control and fuzzy decision-making, and image processing using the F-transform Discusses fuzzy IF-THEN rules for approximating functions, fuzzy cluster analysis, and time series forecasting Insight into Fuzzy Modeling is a reference for researchers in the fields of soft computing and fuzzy logic as well as undergraduate, master and Ph.D. students. Vilém Novák, D.Sc. is Full Professor and Director of the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. Irina Perfilieva, Ph.D. is Full Professor, Senior Scientist, and Head of the Department of Theoretical Research at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. Antonín Dvorák, Ph.D. is Associate Professor, and Senior Scientist at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic.