multiparametric statistics



Denis Bosq Mathematical Statistics and Stochastic Processes Denis Bosq Mathematical Statistics and Stochastic Processes Новинка

Denis Bosq Mathematical Statistics and Stochastic Processes

10651.85 руб.
Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today’s practitioners. Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and robustness, second-order processes in discrete and continuous time and diffusion processes, statistics for discrete and continuous time processes, statistical prediction, and complements in probability. This book is aimed at students studying courses on probability with an emphasis on measure theory and for all practitioners who apply and use statistics and probability on a daily basis.
Dempster Martin Psychology Statistics For Dummies Dempster Martin Psychology Statistics For Dummies Новинка

Dempster Martin Psychology Statistics For Dummies

1530.55 руб.
The introduction to statistics that psychology students can't afford to be without Understanding statistics is a requirement for obtaining and making the most of a degree in psychology, a fact of life that often takes first year psychology students by surprise. Filled with jargon-free explanations and real-life examples, Psychology Statistics For Dummies makes the often-confusing world of statistics a lot less baffling, and provides you with the step-by-step instructions necessary for carrying out data analysis. Psychology Statistics For Dummies: Serves as an easily accessible supplement to doorstop-sized psychology textbooks Provides psychology students with psychology-specific statistics instruction Includes clear explanations and instruction on performing statistical analysis Teaches students how to analyze their data with SPSS, the most widely used statistical packages among students
Peter Petocz A Panorama of Statistics. Perspectives, Puzzles and Paradoxes in Statistics Peter Petocz A Panorama of Statistics. Perspectives, Puzzles and Paradoxes in Statistics Новинка

Peter Petocz A Panorama of Statistics. Perspectives, Puzzles and Paradoxes in Statistics

3073.25 руб.
A Panorama of Statistics: Perspectives, Puzzles and Paradoxes in Statistics Eric Sowey, School of Economics, The University of New South Wales, Sydney, Australia Peter Petocz, Department of Statistics, Macquarie University, Sydney, Australia This book is a stimulating panoramic tour – quite different from a textbook journey – of the world of statistics in both its theory and practice, for teachers, students and practitioners. At each stop on the tour, the authors investigate unusual and quirky aspects of statistics, highlighting historical, biographical and philosophical dimensions of this field of knowledge. Each chapter opens with perspectives on its theme, often from several points of view. Five original and thought-provoking questions follow. These aim at widening readers’ knowledge and deepening their insight. Scattered among the questions are entertaining puzzles to solve and tantalising paradoxes to explain. Readers can compare their own statistical discoveries with the authors’ detailed answers to all the questions. The writing is lively and inviting, the ideas are rewarding, and the material is extensively cross-referenced. A Panorama of Statistics: Leads readers to discover the fascinations of statistics. Is an enjoyable companion to an undergraduate statistics textbook. Is an enriching source of knowledge for statistics teachers and practitioners. Is unique among statistics books today for its memorable content and engaging style. Lending itself equally to reading through and to dipping into, A Panorama of Statistics will surprise teachers, students and practitioners by the variety of ways in which statistics can capture and hold their interest.
A. K. Md. Ehsanes Saleh An Introduction to Probability and Statistics A. K. Md. Ehsanes Saleh An Introduction to Probability and Statistics Новинка

A. K. Md. Ehsanes Saleh An Introduction to Probability and Statistics

10123.22 руб.
A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.
David Unger U Can: Statistics For Dummies David Unger U Can: Statistics For Dummies Новинка

David Unger U Can: Statistics For Dummies

1913.35 руб.
Make studying statistics simple with this easy-to-read resource Wouldn't it be wonderful if studying statistics were easier? With U Can: Statistics I For Dummies, it is! This one-stop resource combines lessons, practical examples, study questions, and online practice problems to provide you with the ultimate guide to help you score higher in your statistics course. Foundational statistics skills are a must for students of many disciplines, and leveraging study materials such as this one to supplement your statistics course can be a life-saver. Because U Can: Statistics I For Dummies contains both the lessons you need to learn and the practice problems you need to put the concepts into action, you'll breeze through your scheduled study time. Statistics is all about collecting and interpreting data, and is applicable in a wide range of subject areas—which translates into its popularity among students studying in diverse programs. So, if you feel a bit unsure in class, rest assured that there is an easy way to help you grasp the nuances of statistics! Understand statistical ideas, techniques, formulas, and calculations Interpret and critique graphs and charts, determine probability, and work with confidence intervals Critique and analyze data from polls and experiments Combine learning and applying your new knowledge with practical examples, practice problems, and expanded online resources U Can: Statistics I For Dummies contains everything you need to score higher in your fundamental statistics course!
David Bowers Medical Statistics from Scratch. An Introduction for Health Professionals David Bowers Medical Statistics from Scratch. An Introduction for Health Professionals Новинка

David Bowers Medical Statistics from Scratch. An Introduction for Health Professionals

4345.23 руб.
Correctly understanding and using medical statistics is a key skill for all medical students and health professionals. In an informal and friendly style, Medical Statistics from Scratch provides a practical foundation for everyone whose first interest is probably not medical statistics. Keeping the level of mathematics to a minimum, it clearly illustrates statistical concepts and practice with numerous real world examples and cases drawn from current medical literature. This fully revised and updated third edition includes new material on: missing data, random allocation and concealment of data intra-class correlation coefficient effect modification and interaction diagnostic testing and the ROC curve standardisation Medical Statistics from Scratch is an ideal learning partner for all medical students and health professionals needing an accessible introduction, or a friendly refresher, to the fundamentals of medical statistics.
Calvin Dytham Choosing and Using Statistics. A Biologist's Guide Calvin Dytham Choosing and Using Statistics. A Biologist's Guide Новинка

Calvin Dytham Choosing and Using Statistics. A Biologist's Guide

2139.84 руб.
Choosing and Using Statistics remains an invaluable guide for students using a computer package to analyse data from research projects and practical class work. The text takes a pragmatic approach to statistics with a strong focus on what is actually needed. There are chapters giving useful advice on the basics of statistics and guidance on the presentation of data. The book is built around a key to selecting the correct statistical test and then gives clear guidance on how to carry out the test and interpret the output from four commonly used computer packages: SPSS, Minitab, Excel, and (new to this edition) the free program, R. Only the basics of formal statistics are described and the emphasis is on jargon-free English but any unfamiliar words can be looked up in the extensive glossary. This new 3rd edition of Choosing and Using Statistics is a must for all students who use a computer package to apply statistics in practical and project work. Features new to this edition: Now features information on using the popular free program, R Uses a simple key and flow chart to help you choose the right statistical test Aimed at students using statistics for projects and in practical classes Includes an extensive glossary and key to symbols to explain any statistical jargon No previous knowledge of statistics is assumed
Peter C. Bruce Introductory Statistics and Analytics. A Resampling Perspective Peter C. Bruce Introductory Statistics and Analytics. A Resampling Perspective Новинка

Peter C. Bruce Introductory Statistics and Analytics. A Resampling Perspective

5620.06 руб.
Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 “Try It Yourself” exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of “Caution” icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics.
Deborah Rumsey J. Statistics For Dummies Deborah Rumsey J. Statistics For Dummies Новинка

Deborah Rumsey J. Statistics For Dummies

1274.57 руб.
Statistics For Dummies, 2nd Edition (9781119293521) was previously published as Statistics For Dummies, 2nd Edition (9780470911082). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. The fun and easy way to get down to business with statistics Stymied by statistics? No fear? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more. Tracks to a typical first semester statistics course Updated examples resonate with today's students Explanations mirror teaching methods and classroom protocol Packed with practical advice and real-world problems, Statistics For Dummies gives you everything you need to analyze and interpret data for improved classroom or on-the-job performance.
Kristin Jarman H. The Art of Data Analysis. How to Answer Almost Any Question Using Basic Statistics Kristin Jarman H. The Art of Data Analysis. How to Answer Almost Any Question Using Basic Statistics Новинка

Kristin Jarman H. The Art of Data Analysis. How to Answer Almost Any Question Using Basic Statistics

4904.45 руб.
A friendly and accessible approach to applying statistics in the real world With an emphasis on critical thinking, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics presents fun and unique examples, guides readers through the entire data collection and analysis process, and introduces basic statistical concepts along the way. Leaving proofs and complicated mathematics behind, the author portrays the more engaging side of statistics and emphasizes its role as a problem-solving tool. In addition, light-hearted case studies illustrate the application of statistics to real data analyses, highlighting the strengths and weaknesses of commonly used techniques. Written for the growing academic and industrial population that uses statistics in everyday life, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics highlights important issues that often arise when collecting and sifting through data. Featured concepts include: • Descriptive statistics • Analysis of variance • Probability and sample distributions • Confidence intervals • Hypothesis tests • Regression • Statistical correlation • Data collection • Statistical analysis with graphs Fun and inviting from beginning to end, The Art of Data Analysis is an ideal book for students as well as managers and researchers in industry, medicine, or government who face statistical questions and are in need of an intuitive understanding of basic statistical reasoning.
Shelemyahu Zacks Examples and Problems in Mathematical Statistics Shelemyahu Zacks Examples and Problems in Mathematical Statistics Новинка

Shelemyahu Zacks Examples and Problems in Mathematical Statistics

10651.85 руб.
Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
Deborah Rumsey J. Statistics II for Dummies Deborah Rumsey J. Statistics II for Dummies Новинка

Deborah Rumsey J. Statistics II for Dummies

1530.55 руб.
The ideal supplement and study guide for students preparing for advanced statistics Packed with fresh and practical examples appropriate for a range of degree-seeking students, Statistics II For Dummies helps any reader succeed in an upper-level statistics course. It picks up with data analysis where Statistics For Dummies left off, featuring new and updated examples, real-world applications, and test-taking strategies for success. This easy-to-understand guide covers such key topics as sorting and testing models, using regression to make predictions, performing variance analysis (ANOVA), drawing test conclusions with chi-squares, and making comparisons with the Rank Sum Test.
David Machin Medical Statistics. A Textbook for the Health Sciences David Machin Medical Statistics. A Textbook for the Health Sciences Новинка

David Machin Medical Statistics. A Textbook for the Health Sciences

3670.82 руб.
Provides students and practitioners with a clear, concise introduction to the statistics they will come across in their regular reading of clinical papers. Written by three experts with wide teaching and consulting experience, Medical Statistics: A Textbook for the Health Sciences, Fourth Edition: Assumes no prior knowledge of statistics Covers all essential statistical methods Completely revised, updated and expanded Includes numerous examples and exercises on the interpretation of the statistics in papers published in medical journals From the reviews of the previous edition: «The book has several excellent features: it is written by statisticians, is.... well presented, is well referenced.... and is short.» THE LANCET «Many statisticians are concerned at the generally poor standard of statistics in papers published in medical journals. Perhaps this could be remedied if more research workers would spare a few hours to read through Campbell and Machin's book.» BRITISH MEDICAL JOURNAL «… a simple, interesting and insightful introduction to medical statistics… highly recommended.» STATISTICAL METHODS IN MEDICAL RESEARCH «Campbell and Machin found the golden mean… this book can be recommended for all students and all medical researchers.» ISCB NEWSLETTER
David Rosenthal A. Statistics for Health Care Management and Administration. Working with Excel David Rosenthal A. Statistics for Health Care Management and Administration. Working with Excel Новинка

David Rosenthal A. Statistics for Health Care Management and Administration. Working with Excel

8247.97 руб.
The must-have statistics guide for students of health services Statistics for Health Care Management and Administration is a unique and invaluable resource for students of health care administration and public health. The book introduces students to statistics within the context of health care, focusing on the major data and analysis techniques used in the field. All hands-on instruction makes use of Excel, the most common spreadsheet software that is ubiquitous in the workplace. This new third edition has been completely retooled, with new content on proportions, ANOVA, linear regression, chi-squares, and more, Step-by-step instructions in the latest version of Excel and numerous annotated screen shots make examples easy to follow and understand. Familiarity with statistical methods is essential for health services professionals and researchers, who must understand how to acquire, handle, and analyze data. This book not only helps students develop the necessary data analysis skills, but it also boosts familiarity with important software that employers will be looking for. Learn the basics of statistics in the context of Excel Understand how to acquire data and display it for analysis Master various tests including probability, regression, and more Turn test results into usable information with proper analysis Statistics for Health Care Management and Administration gets students off to a great start by introducing statistics in the workplace context from the very beginning.
Hardin James W. Common Errors in Statistics (and How to Avoid Them) Hardin James W. Common Errors in Statistics (and How to Avoid Them) Новинка

Hardin James W. Common Errors in Statistics (and How to Avoid Them)

5130.51 руб.
Praise for the Second Edition «All statistics students and teachers will find in this book a friendly and intelligentguide to . . . applied statistics in practice.» —Journal of Applied Statistics «. . . a very engaging and valuable book for all who use statistics in any setting.» —CHOICE «. . . a concise guide to the basics of statistics, replete with examples . . . a valuablereference for more advanced statisticians as well.» —MAA Reviews Now in its Third Edition, the highly readable Common Errors in Statistics (and How to Avoid Them) continues to serve as a thorough and straightforward discussion of basic statistical methods, presentations, approaches, and modeling techniques. Further enriched with new examples and counterexamples from the latest research as well as added coverage of relevant topics, this new edition of the benchmark book addresses popular mistakes often made in data collection and provides an indispensable guide to accurate statistical analysis and reporting. The authors' emphasis on careful practice, combined with a focus on the development of solutions, reveals the true value of statistics when applied correctly in any area of research. The Third Edition has been considerably expanded and revised to include: A new chapter on data quality assessment A new chapter on correlated data An expanded chapter on data analysis covering categorical and ordinal data, continuous measurements, and time-to-event data, including sections on factorial and crossover designs Revamped exercises with a stronger emphasis on solutions An extended chapter on report preparation New sections on factor analysis as well as Poisson and negative binomial regression Providing valuable, up-to-date information in the same user-friendly format as its predecessor, Common Errors in Statistics (and How to Avoid Them), Third Edition is an excellent book for students and professionals in industry, government, medicine, and the social sciences.
Markus Hoechstoetter Probability and Statistics for Finance Markus Hoechstoetter Probability and Statistics for Finance Новинка

Markus Hoechstoetter Probability and Statistics for Finance

6066.7 руб.
A comprehensive look at how probability and statistics is applied to the investment process Finance has become increasingly more quantitative, drawing on techniques in probability and statistics that many finance practitioners have not had exposure to before. In order to keep up, you need a firm understanding of this discipline. Probability and Statistics for Finance addresses this issue by showing you how to apply quantitative methods to portfolios, and in all matter of your practices, in a clear, concise manner. Informative and accessible, this guide starts off with the basics and builds to an intermediate level of mastery. • Outlines an array of topics in probability and statistics and how to apply them in the world of finance • Includes detailed discussions of descriptive statistics, basic probability theory, inductive statistics, and multivariate analysis • Offers real-world illustrations of the issues addressed throughout the text The authors cover a wide range of topics in this book, which can be used by all finance professionals as well as students aspiring to enter the field of finance.
Alan Anderson Business Statistics For Dummies Alan Anderson Business Statistics For Dummies Новинка

Alan Anderson Business Statistics For Dummies

1465.86 руб.
Score higher in your business statistics course? Easy. Business statistics is a common course for business majors and MBA candidates. It examines common data sets and the proper way to use such information when conducting research and producing informational reports such as profit and loss statements, customer satisfaction surveys, and peer comparisons. Business Statistics For Dummies tracks to a typical business statistics course offered at the undergraduate and graduate levels and provides clear, practical explanations of business statistical ideas, techniques, formulas, and calculations, with lots of examples that shows you how these concepts apply to the world of global business and economics. Shows you how to use statistical data to get an informed and unbiased picture of the market Serves as an excellent supplement to classroom learning Helps you score your highest in your Business Statistics course If you're studying business at the university level or you're a professional looking for a desk reference on this complicated topic, Business Statistics For Dummies has you covered.
Deborah Rumsey J. Statistics Essentials For Dummies Deborah Rumsey J. Statistics Essentials For Dummies Новинка

Deborah Rumsey J. Statistics Essentials For Dummies

636.97 руб.
Statistics Essentials For Dummies not only provides students enrolled in Statistics I with an excellent high-level overview of key concepts, but it also serves as a reference or refresher for students in upper-level statistics courses. Free of review and ramp-up material, Statistics Essentials For Dummies sticks to the point, with content focused on key course topics only. It provides discrete explanations of essential concepts taught in a typical first semester college-level statistics course, from odds and error margins to confidence intervals and conclusions. This guide is also a perfect reference for parents who need to review critical statistics concepts as they help high school students with homework assignments, as well as for adult learners headed back into the classroom who just need a refresher of the core concepts. The Essentials For Dummies Series Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.
William Bolstad M. Introduction to Bayesian Statistics William Bolstad M. Introduction to Bayesian Statistics Новинка

William Bolstad M. Introduction to Bayesian Statistics

10497.42 руб.
"…this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Jason Matthiopoulos How to be a Quantitative Ecologist. The 'A to R' of Green Mathematics and Statistics Jason Matthiopoulos How to be a Quantitative Ecologist. The 'A to R' of Green Mathematics and Statistics Новинка

Jason Matthiopoulos How to be a Quantitative Ecologist. The 'A to R' of Green Mathematics and Statistics

2139.84 руб.
Ecological research is becoming increasingly quantitative, yet students often opt out of courses in mathematics and statistics, unwittingly limiting their ability to carry out research in the future. This textbook provides a practical introduction to quantitative ecology for students and practitioners who have realised that they need this opportunity. The text is addressed to readers who haven't used mathematics since school, who were perhaps more confused than enlightened by their undergraduate lectures in statistics and who have never used a computer for much more than word processing and data entry. From this starting point, it slowly but surely instils an understanding of mathematics, statistics and programming, sufficient for initiating research in ecology. The book’s practical value is enhanced by extensive use of biological examples and the computer language R for graphics, programming and data analysis. Key Features: Provides a complete introduction to mathematics statistics and computing for ecologists. Presents a wealth of ecological examples demonstrating the applied relevance of abstract mathematical concepts, showing how a little technique can go a long way in answering interesting ecological questions. Covers elementary topics, including the rules of algebra, logarithms, geometry, calculus, descriptive statistics, probability, hypothesis testing and linear regression. Explores more advanced topics including fractals, non-linear dynamical systems, likelihood and Bayesian estimation, generalised linear, mixed and additive models, and multivariate statistics. R boxes provide step-by-step recipes for implementing the graphical and numerical techniques outlined in each section. How to be a Quantitative Ecologist provides a comprehensive introduction to mathematics, statistics and computing and is the ideal textbook for late undergraduate and postgraduate courses in environmental biology. «With a book like this, there is no excuse for people to be afraid of maths, and to be ignorant of what it can do.» —Professor Tim Benton, Faculty of Biological Sciences, University of Leeds, UK
Yasunori Fujikoshi Multivariate Statistics. High-Dimensional and Large-Sample Approximations Yasunori Fujikoshi Multivariate Statistics. High-Dimensional and Large-Sample Approximations Новинка

Yasunori Fujikoshi Multivariate Statistics. High-Dimensional and Large-Sample Approximations

11171.83 руб.
A comprehensive examination of high-dimensional analysis of multivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic tools and exact distributional results of multivariate statistics, and, in addition, the derivations of most distributional results are provided. Statistical methods for high-dimensional data, such as curve data, spectra, images, and DNA microarrays, are discussed. Bootstrap approximations from a methodological point of view, theoretical accuracies in MANOVA tests, and model selection criteria are also presented. Subsequent chapters feature additional topical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance in discriminant analysis, growth curve models, generalized linear models, profile analysis, and multiple comparison Each chapter provides real-world applications and thorough analyses of the real data. In addition, approximation formulas found throughout the book are a useful tool for both practical and theoretical statisticians, and basic results on exact distributions in multivariate analysis are included in a comprehensive, yet accessible, format. Multivariate Statistics is an excellent book for courses on probability theory in statistics at the graduate level. It is also an essential reference for both practical and theoretical statisticians who are interested in multivariate analysis and who would benefit from learning the applications of analytical probabilistic methods in statistics.
Peter Goos Statistics with JMP. Graphs, Descriptive Statistics and Probability Peter Goos Statistics with JMP. Graphs, Descriptive Statistics and Probability Новинка

Peter Goos Statistics with JMP. Graphs, Descriptive Statistics and Probability

7123.25 руб.
Peter Goos, Department of Statistics, University of Leuven, Faculty of Bio-Science Engineering and University of Antwerp, Faculty of Applied Economics, Belgium David Meintrup, Department of Mathematics and Statistics, University of Applied Sciences Ingolstadt, Faculty of Mechanical Engineering, Germany Thorough presentation of introductory statistics and probability theory, with numerous examples and applications using JMP JMP: Graphs, Descriptive Statistics and Probability provides an accessible and thorough overview of the most important descriptive statistics for nominal, ordinal and quantitative data with particular attention to graphical representations. The authors distinguish their approach from many modern textbooks on descriptive statistics and probability theory by offering a combination of theoretical and mathematical depth, and clear and detailed explanations of concepts. Throughout the book, the user-friendly, interactive statistical software package JMP is used for calculations, the computation of probabilities and the creation of figures. The examples are explained in detail, and accompanied by step-by-step instructions and screenshots. The reader will therefore develop an understanding of both the statistical theory and its applications. Traditional graphs such as needle charts, histograms and pie charts are included, as well as the more modern mosaic plots, bubble plots and heat maps. The authors discuss probability theory, particularly discrete probability distributions and continuous probability densities, including the binomial and Poisson distributions, and the exponential, normal and lognormal densities. They use numerous examples throughout to illustrate these distributions and densities. Key features: Introduces each concept with practical examples and demonstrations in JMP. Provides the statistical theory including detailed mathematical derivations. Presents illustrative examples in each chapter accompanied by step-by-step instructions and screenshots to help develop the reader’s understanding of both the statistical theory and its applications. A supporting website with data sets and other teaching materials. This book is equally aimed at students in engineering, economics and natural sciences who take classes in statistics as well as at masters/advanced students in applied statistics and probability theory. For teachers of applied statistics, this book provides a rich resource of course material, examples and applications.
Judea Pearl Causal Inference in Statistics. A Primer Judea Pearl Causal Inference in Statistics. A Primer Новинка

Judea Pearl Causal Inference in Statistics. A Primer

2868.36 руб.
Many of the concepts and terminology surrounding modern causal inference can be quite intimidating to the novice. Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.
Kristin Jarman H. Beyond Basic Statistics. Tips, Tricks, and Techniques Every Data Analyst Should Know Kristin Jarman H. Beyond Basic Statistics. Tips, Tricks, and Techniques Every Data Analyst Should Know Новинка

Kristin Jarman H. Beyond Basic Statistics. Tips, Tricks, and Techniques Every Data Analyst Should Know

4495.34 руб.
Features basic statistical concepts as a tool for thinking critically, wading through large quantities of information, and answering practical, everyday questions Written in an engaging and inviting manner, Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know presents the more subjective side of statistics—the art of data analytics. Each chapter explores a different question using fun, common sense examples that illustrate the concepts, methods, and applications of statistical techniques. Without going into the specifics of theorems, propositions, or formulas, the book effectively demonstrates statistics as a useful problem-solving tool. In addition, the author demonstrates how statistics is a tool for thinking critically, wading through large volumes of information, and answering life’s important questions. Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know also features: Plentiful examples throughout aimed to strengthen readers’ understanding of the statistical concepts and methods A step-by-step approach to elementary statistical topics such as sampling, hypothesis tests, outlier detection, normality tests, robust statistics, and multiple regression A case study in each chapter that illustrates the use of the presented techniques Highlights of well-known shortcomings that can lead to false conclusions An introduction to advanced techniques such as validation and bootstrapping Featuring examples that are engaging and non-application specific, the book appeals to a broad audience of students and professionals alike, specifically students of undergraduate statistics, managers, medical professionals, and anyone who has to make decisions based on raw data or compiled results.
Hannu Oja Robust Correlation. Theory and Applications Hannu Oja Robust Correlation. Theory and Applications Новинка

Hannu Oja Robust Correlation. Theory and Applications

6658.7 руб.
This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. Focuses on implementation of methodology and application of robust correlation with R. Introduces the main approaches in robust statistics, such as Huber’s minimax approach and Hampel’s approach based on influence functions. Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates. Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data. Includes an accompanying website featuring computer code and datasets Features exercises and examples throughout the text using both small and large data sets. Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful.
Alan Anderson Statistics for Big Data For Dummies Alan Anderson Statistics for Big Data For Dummies Новинка

Alan Anderson Statistics for Big Data For Dummies

1465.86 руб.
The fast and easy way to make sense of statistics for big data Does the subject of data analysis make you dizzy? You've come to the right place! Statistics For Big Data For Dummies breaks this often-overwhelming subject down into easily digestible parts, offering new and aspiring data analysts the foundation they need to be successful in the field. Inside, you'll find an easy-to-follow introduction to exploratory data analysis, the lowdown on collecting, cleaning, and organizing data, everything you need to know about interpreting data using common software and programming languages, plain-English explanations of how to make sense of data in the real world, and much more. Data has never been easier to come by, and the tools students and professionals need to enter the world of big data are based on applied statistics. While the word «statistics» alone can evoke feelings of anxiety in even the most confident student or professional, it doesn't have to. Written in the familiar and friendly tone that has defined the For Dummies brand for more than twenty years, Statistics For Big Data For Dummies takes the intimidation out of the subject, offering clear explanations and tons of step-by-step instruction to help you make sense of data mining—without losing your cool. Helps you to identify valid, useful, and understandable patterns in data Provides guidance on extracting previously unknown information from large databases Shows you how to discover patterns available in big data Gives you access to the latest tools and techniques for working in big data If you're a student enrolled in a related Applied Statistics course or a professional looking to expand your skillset, Statistics For Big Data For Dummies gives you access to everything you need to succeed.
Roberto Benedetti Agricultural Survey Methods Roberto Benedetti Agricultural Survey Methods Новинка

Roberto Benedetti Agricultural Survey Methods

12447.37 руб.
Due to the widespread use of surveys in agricultural resources estimation there is a broad and recognizable interest in methods and techniques to collect and process agricultural data. This book brings together the knowledge of academics and experts to increase the dissemination of the latest developments in agricultural statistics. Conducting a census, setting up frames and registers and using administrative data for statistical purposes are covered and issues arising from sample design and estimation, use of remote sensing, management of data quality and dissemination and analysis of survey data are explored. Key features: Brings together high quality research on agricultural statistics from experts in this field. Provides a thorough and much needed overview of developments within agricultural statistics. Contains summaries for each chapter, providing a valuable reference framework for those new to the field. Based upon a selection of key methodological papers presented at the ICAS conference series, updated and expanded to address current issues. Covers traditional statistical methodologies including sampling and weighting. This book provides a much needed guide to conducting surveys of land use and to the latest developments in agricultural statistics. Statisticians interested in agricultural statistics, agricultural statisticians in national statistics offices and statisticians and researchers using survey methodology will benefit from this book.
Belinda Barton Medical Statistics. A Guide to SPSS, Data Analysis and Critical Appraisal Belinda Barton Medical Statistics. A Guide to SPSS, Data Analysis and Critical Appraisal Новинка

Belinda Barton Medical Statistics. A Guide to SPSS, Data Analysis and Critical Appraisal

5620.06 руб.
Medical Statistics provides the necessary statistical tools to enable researchers to undertake and understand evidence-based clinical research. It is a practical guide to conducting statistical research and interpreting statistics in the context of how the participants were recruited, how the study was designed, what types of variables were used, what effect size was found, and what the P values mean. It guides researchers through the process of selecting the correct statistics and show how to best report results for presentation and publication. Clear and concise explanations, combined with plenty of examples and tabulated explanations are based on the authors’ popular medical statistics courses. The table of contents is divided into sections according to whether data are continuous or categorical in nature as this distinction is fundamental to selecting the correct statistics. Each chapter provides a clear step-by-step guide to each statistical test with practical instructions on how to generate and interpret the numbers, and present the results as scientific tables or graphs. The chapters conclude with critical appraisal guidelines to help researchers review the reporting of results from each type of statistical test. This new edition includes a new chapter on repeated measures and mixed models and a helpful glossary of terms provides an easy reference that applies to all chapters.
John Kent T. Geometry Driven Statistics John Kent T. Geometry Driven Statistics Новинка

John Kent T. Geometry Driven Statistics

8997.79 руб.
A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia's long and influential career in statistics. A common theme unifying much of Mardia’s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high-profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.
Sterne Jonathan A.C. Essential Medical Statistics Sterne Jonathan A.C. Essential Medical Statistics Новинка

Sterne Jonathan A.C. Essential Medical Statistics

6509.89 руб.
Blackwell Publishing is delighted to announce that this book has been Highly Commended in the 2004 BMA Medical Book Competition. Here is the judges' summary of this book: «This is a technical book on a technical subject but presented in a delightful way. There are many books on statistics for doctors but there are few that are excellent and this is certainly one of them. Statistics is not an easy subject to teach or write about. The authors have succeeded in producing a book that is as good as it can get. For the keen student who does not want a book for mathematicians, this is an excellent first book on medical statistics.» Essential Medical Statistics is a classic amongst medical statisticians. An introductory textbook, it presents statistics with a clarity and logic that demystifies the subject, while providing a comprehensive coverage of advanced as well as basic methods. The second edition of Essential Medical Statistics has been comprehensively revised and updated to include modern statistical methods and modern approaches to statistical analysis, while retaining the approachable and non-mathematical style of the first edition. The book now includes full coverage of the most commonly used regression models, multiple linear regression, logistic regression, Poisson regression and Cox regression, as well as a chapter on general issues in regression modelling. In addition, new chapters introduce more advanced topics such as meta-analysis, likelihood, bootstrapping and robust standard errors, and analysis of clustered data. Aimed at students of medical statistics, medical researchers, public health practitioners and practising clinicians using statistics in their daily work, the book is designed as both a teaching and a reference text. The format of the book is clear with highlighted formulae and worked examples, so that all concepts are presented in a simple, practical and easy-to-understand way. The second edition enhances the emphasis on choice of appropriate methods with new chapters on strategies for analysis and measures of association and impact. Essential Medical Statistics is supported by a web site at www.blackwellpublishing.com/essentialmedstats. This useful online resource provides statistical datasets to download, as well as sample chapters and future updates.
Prakash Gorroochurn Classic Topics on the History of Modern Mathematical Statistics. From Laplace to More Recent Times Prakash Gorroochurn Classic Topics on the History of Modern Mathematical Statistics. From Laplace to More Recent Times Новинка

Prakash Gorroochurn Classic Topics on the History of Modern Mathematical Statistics. From Laplace to More Recent Times

10123.22 руб.
"There is nothing like it on the market…no others are as encyclopedic…the writing is exemplary: simple, direct, and competent." —George W. Cobb, Professor Emeritus of Mathematics and Statistics, Mount Holyoke College Written in a direct and clear manner, Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times presents a comprehensive guide to the history of mathematical statistics and details the major results and crucial developments over a 200-year period. Presented in chronological order, the book features an account of the classical and modern works that are essential to understanding the applications of mathematical statistics. Divided into three parts, the book begins with extensive coverage of the probabilistic works of Laplace, who laid much of the foundations of later developments in statistical theory. Subsequently, the second part introduces 20th century statistical developments including work from Karl Pearson, Student, Fisher, and Neyman. Lastly, the author addresses post-Fisherian developments. Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times also features: A detailed account of Galton's discovery of regression and correlation as well as the subsequent development of Karl Pearson's X2 and Student's t A comprehensive treatment of the permeating influence of Fisher in all aspects of modern statistics beginning with his work in 1912 Significant coverage of Neyman–Pearson theory, which includes a discussion of the differences to Fisher’s works Discussions on key historical developments as well as the various disagreements, contrasting information, and alternative theories in the history of modern mathematical statistics in an effort to provide a thorough historical treatment Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times is an excellent reference for academicians with a mathematical background who are teaching or studying the history or philosophical controversies of mathematics and statistics. The book is also a useful guide for readers with a general interest in statistical inference.
Phillip Good I. Introduction to Statistics Through Resampling Methods and R Phillip Good I. Introduction to Statistics Through Resampling Methods and R Новинка

Phillip Good I. Introduction to Statistics Through Resampling Methods and R

5057.71 руб.
A highly accessible alternative approach to basic statistics Praise for the First Edition: «Certainly one of the most impressive little paperback 200-page introductory statistics books that I will ever see . . . it would make a good nightstand book for every statistician.»—Technometrics Written in a highly accessible style, Introduction to Statistics through Resampling Methods and R, Second Edition guides students in the understanding of descriptive statistics, estimation, hypothesis testing, and model building. The book emphasizes the discovery method, enabling readers to ascertain solutions on their own rather than simply copy answers or apply a formula by rote. The Second Edition utilizes the R programming language to simplify tedious computations, illustrate new concepts, and assist readers in completing exercises. The text facilitates quick learning through the use of: More than 250 exercises—with selected «hints»—scattered throughout to stimulate readers' thinking and to actively engage them in applying their newfound skills An increased focus on why a method is introduced Multiple explanations of basic concepts Real-life applications in a variety of disciplines Dozens of thought-provoking, problem-solving questions in the final chapter to assist readers in applying statistics to real-life applications Introduction to Statistics through Resampling Methods and R, Second Edition is an excellent resource for students and practitioners in the fields of agriculture, astrophysics, bacteriology, biology, botany, business, climatology, clinical trials, economics, education, epidemiology, genetics, geology, growth processes, hospital administration, law, manufacturing, marketing, medicine, mycology, physics, political science, psychology, social welfare, sports, and toxicology who want to master and learn to apply statistical methods.
Barry Cohen H. Explaining Psychological Statistics Barry Cohen H. Explaining Psychological Statistics Новинка

Barry Cohen H. Explaining Psychological Statistics

12261.12 руб.
Praise for the previous edition of Explaining Psychological Statistics «I teach a master's level, one-semester statistics course, and it is a challenge to find a textbook that is at the right level. Barry Cohen's book is the best one I have found. . . . I like the fact that the chapters have different sections that allow the professor to decide how much depth of coverage to include in his/her course. . . . This is a strong and improved edition of an already good book.» —Karen Caplovitz Barrett, PhD, Professor, and Assistant Department Head of Human Development and Family Studies, Colorado State University «The quality is uniformly good. . . . This is not the first statistics text I have read but it is one of the best.» —Michael Dosch, PhD, MS, CRNA, Associate Professor and Chair, Nurse Anesthesia, University of Detroit Mercy A clear and accessible statistics text— now fully updated and revised Now with a new chapter showing students how to apply the right test in the right way to yield the most accurate and true result, Explaining Psychological Statistics, Fourth Edition offers students an engaging introduction to the field. Presenting the material in a logically flowing, non-intimidating way, this comprehensive text covers both introductory and advanced topics in statistics, from the basic concepts (and limitations) of null hypothesis testing to mixed-design ANOVA and multiple regression. The Fourth Edition covers: Basic statistical procedures Frequency tables, graphs, and distributions Measures of central tendency and variability One- and two-sample hypothesis tests Hypothesis testing Interval estimation and the t distribution
Ed Swires-Hennessy Presenting Data: How to Communicate Your Message Effectively Ed Swires-Hennessy Presenting Data: How to Communicate Your Message Effectively Новинка

Ed Swires-Hennessy Presenting Data: How to Communicate Your Message Effectively

2437.26 руб.
A clear easy-to-read guide to presenting your message using statistical data Poor presentation of data is everywhere; basic principles are forgotten or ignored. As a result, audiences are presented with confusing tables and charts that do not make immediate sense. This book is intended to be read by all who present data in any form. The author, a chartered statistician who has run many courses on the subject of data presentation, presents numerous examples alongside an explanation of how improvements can be made and basic principles to adopt. He advocates following four key ‘C’ words in all messages: Clear, Concise, Correct and Consistent. Following the principles in the book will lead to clearer, simpler and easier to understand messages which can then be assimilated faster. Anyone from student to researcher, journalist to policy adviser, charity worker to government statistician, will benefit from reading this book. More importantly, it will also benefit the recipients of the presented data. ‘Ed Swires-Hennessy, a recognised expert in the presentation of statistics, explains and clearly describes a set of “principles” of clear and objective statistical communication. This book should be required reading for all those who present statistics.’ Richard Laux, UK Statistics Authority ‘I think this is a fantastic book and hope everyone who presents data or statistics makes time to read it first.’ David Marder, Chief Media Adviser, Office for National Statistics, UK ‘Ed’s book makes his tried-and-tested material widely available to anyone concerned with understanding and presenting data. It is full of interesting insights, is highly practical and packed with sensible suggestions and nice ideas that you immediately want to try out.’ Dr Shirley Coleman, Principal Statistician, Industrial Statistics Research Unit, School of Mathematics and Statistics, Newcastle University, UK
Andrew Wheeler SPSS Statistics for Data Analysis and Visualization Andrew Wheeler SPSS Statistics for Data Analysis and Visualization Новинка

Andrew Wheeler SPSS Statistics for Data Analysis and Visualization

3193 руб.
Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These «hidden tools» can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.
Guttman Irwin Statistics and Probability with Applications for Engineers and Scientists Guttman Irwin Statistics and Probability with Applications for Engineers and Scientists Новинка

Guttman Irwin Statistics and Probability with Applications for Engineers and Scientists

11111.64 руб.
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Hardin James W. Common Errors in Statistics (and How to Avoid Them) Hardin James W. Common Errors in Statistics (and How to Avoid Them) Новинка

Hardin James W. Common Errors in Statistics (and How to Avoid Them)

5057.71 руб.
Praise for Common Errors in Statistics (and How to Avoid Them) «A very engaging and valuable book for all who use statistics in any setting.» —CHOICE «Addresses popular mistakes often made in data collection and provides an indispensable guide to accurate statistical analysis and reporting. The authors' emphasis on careful practice, combined with a focus on the development of solutions, reveals the true value of statistics when applied correctly in any area of research.» —MAA Reviews Common Errors in Statistics (and How to Avoid Them), Fourth Edition provides a mathematically rigorous, yet readily accessible foundation in statistics for experienced readers as well as students learning to design and complete experiments, surveys, and clinical trials. Providing a consistent level of coherency throughout, the highly readable Fourth Edition focuses on debunking popular myths, analyzing common mistakes, and instructing readers on how to choose the appropriate statistical technique to address their specific task. The authors begin with an introduction to the main sources of error and provide techniques for avoiding them. Subsequent chapters outline key methods and practices for accurate analysis, reporting, and model building. The Fourth Edition features newly added topics, including: Baseline data Detecting fraud Linear regression versus linear behavior Case control studies Minimum reporting requirements Non-random samples The book concludes with a glossary that outlines key terms, and an extensive bibliography with several hundred citations directing readers to resources for further study. Presented in an easy-to-follow style, Common Errors in Statistics, Fourth Edition is an excellent book for students and professionals in industry, government, medicine, and the social sciences.
Ricardo Maronna A. Robust Statistics. Theory and Methods (with R) Ricardo Maronna A. Robust Statistics. Theory and Methods (with R) Новинка

Ricardo Maronna A. Robust Statistics. Theory and Methods (with R)

10115.42 руб.
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Hahn Gerald J. A Career in Statistics. Beyond the Numbers Hahn Gerald J. A Career in Statistics. Beyond the Numbers Новинка

Hahn Gerald J. A Career in Statistics. Beyond the Numbers

5820.2 руб.
A valuable guide to a successful career as a statistician A Career in Statistics: Beyond the Numbers prepares readers for careers in statistics by emphasizing essential concepts and practices beyond the technical tools provided in standard courses and texts. This insider's guide from internationally recognized applied statisticians helps readers decide whether a career in statistics is right for them, provides hands-on guidance on how to prepare for such a career, and shows how to succeed on the job. The book provides non-technical guidance for a successful career. The authors' extensive industrial experience is supplemented by insights from contributing authors from government and academia, Carol Joyce Blumberg, Leonard M. Gaines, Lynne B. Hare, William Q. Meeker, and Josef Schmee. Following an introductory chapter that provides an overview of the field, the authors discuss the various dimensions of a career in applied statistics in three succinct parts: The Work of a Statistician describes the day-to-day activities of applied statisticians in business and industry, official government, and various other application areas, highlighting the work environment and major on-the-job challenges Preparing for a Successful Career in Statistics describes the personal traits that characterize successful statisticians, the education that they need to acquire, and approaches for securing the right job Building a Successful Career as a Statistician offers practical guidance for addressing key challenges that statisticians face on the job, such as project initiation and execution, effective communication, publicizing successes, ethical considerations, and gathering good data; alternative career paths are also described The book concludes with an in-depth examination of careers for statisticians in academia as well as tips to help them stay on top of their field throughout their careers. Each chapter includes thought-provoking discussion questions and a Major Takeaways section that outlines key concepts. Real-world examples illustrate key points, and an FTP site provides additional information on selected topics. A Career in Statistics is an invaluable guide for individuals who are considering or have decided on a career in statistics as well as for statisticians already on the job who want to accelerate their path to success. It also serves as a suitable book for courses on statistical consulting, statistical practice, and statistics in the workplace at the undergraduate and graduate levels.
Trevor Williams Trading Economics. A Guide to Economic Statistics for Practitioners and Students Trevor Williams Trading Economics. A Guide to Economic Statistics for Practitioners and Students Новинка

Trevor Williams Trading Economics. A Guide to Economic Statistics for Practitioners and Students

6066.7 руб.
A practical guide to understanding how key economic and market statistics drive financial market trends The recent global financial crisis stressed the need for economists who understand how key economic and market statistics drive financial market trends and how to mitigate the risks for businesses that those trends affect. Trading Economics provides guidance for navigating key market figures in a convenient and practical format. Emphasizing the link between economic data and market movements, this book analyzes surveys, economic growth statistics, inflation, labor markets, international trade, monetary and fiscal indicators, and their relevance in financial markets. It bypasses complex terminology to offer a hands-on, accessible introduction to financial statistics and how to profit from them. Offers clear illustrations and an easy-to-read layout to teach you how to trade profitably in financial markets and minimizes risk for your business Written Trevor Williams and Victoria Turton, authoritative public figures with experience working on the New York Stock Exchange Includes a website featuring a blog and new surveys as they develop accompanies the book Complete with worked examples and updated information, Trading Economics is an essential, comprehensive guide to understanding every aspect of financial market trends and how to navigate them to your advantage.
Mark Gardener Beginning R. The Statistical Programming Language Mark Gardener Beginning R. The Statistical Programming Language Новинка

Mark Gardener Beginning R. The Statistical Programming Language

2232.35 руб.
Conquer the complexities of this open source statistical language R is fast becoming the de facto standard for statistical computing and analysis in science, business, engineering, and related fields. This book examines this complex language using simple statistical examples, showing how R operates in a user-friendly context. Both students and workers in fields that require extensive statistical analysis will find this book helpful as they learn to use R for simple summary statistics, hypothesis testing, creating graphs, regression, and much more. It covers formula notation, complex statistics, manipulating data and extracting components, and rudimentary programming. R, the open source statistical language increasingly used to handle statistics and produces publication-quality graphs, is notoriously complex This book makes R easier to understand through the use of simple statistical examples, teaching the necessary elements in the context in which R is actually used Covers getting started with R and using it for simple summary statistics, hypothesis testing, and graphs Shows how to use R for formula notation, complex statistics, manipulating data, extracting components, and regression Provides beginning programming instruction for those who want to write their own scripts Beginning R offers anyone who needs to perform statistical analysis the information necessary to use R with confidence.
Ansgar Steland Financial Statistics and Mathematical Finance. Methods, Models and Applications Ansgar Steland Financial Statistics and Mathematical Finance. Methods, Models and Applications Новинка

Ansgar Steland Financial Statistics and Mathematical Finance. Methods, Models and Applications

7586.57 руб.
Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.
Peter Lee M. Bayesian Statistics. An Introduction Peter Lee M. Bayesian Statistics. An Introduction Новинка

Peter Lee M. Bayesian Statistics. An Introduction

4900.62 руб.
Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as well as how it contrasts with the conventional approach. The theory is built up step by step, and important notions such as sufficiency are brought out of a discussion of the salient features of specific examples. This edition: Includes expanded coverage of Gibbs sampling, including more numerical examples and treatments of OpenBUGS, R2WinBUGS and R2OpenBUGS. Presents significant new material on recent techniques such as Bayesian importance sampling, variational Bayes, Approximate Bayesian Computation (ABC) and Reversible Jump Markov Chain Monte Carlo (RJMCMC). Provides extensive examples throughout the book to complement the theory presented. Accompanied by a supporting website featuring new material and solutions. More and more students are realizing that they need to learn Bayesian statistics to meet their academic and professional goals. This book is best suited for use as a main text in courses on Bayesian statistics for third and fourth year undergraduates and postgraduate students.
Anders Wallgren Register-based Statistics. Statistical Methods for Administrative Data Anders Wallgren Register-based Statistics. Statistical Methods for Administrative Data Новинка

Anders Wallgren Register-based Statistics. Statistical Methods for Administrative Data

9298 руб.
This book provides a comprehensive and up to date treatment of theory and practical implementation in Register-based statistics. It begins by defining the area, before explaining how to structure such systems, as well as detailing alternative approaches. It explains how to create statistical registers, how to implement quality assurance, and the use of IT systems for register-based statistics. Further to this, clear details are given about the practicalities of implementing such statistical methods, such as protection of privacy and the coordination and coherence of such an undertaking. This edition offers a full understanding of both the principles and practices of this increasingly popular area of statistics, and can be considered a first step to a more systematic way of working with register-statistical issues. This book addresses the growing global interest in the topic and employs a much broader, more international approach than the 1st edition. New chapters explore different kinds of register-based surveys, such as preconditions for register-based statistics and comparing sample survey and administrative data. Furthermore, the authors present discussions on register-based census, national accounts and the transition towards a register-based system as well as presenting new chapters on quality assessment of administrative sources and production process quality.
Peter Goos Statistics with JMP: Hypothesis Tests, ANOVA and Regression Peter Goos Statistics with JMP: Hypothesis Tests, ANOVA and Regression Новинка

Peter Goos Statistics with JMP: Hypothesis Tests, ANOVA and Regression

5634.29 руб.
Statistics with JMP: Hypothesis Tests, ANOVA and Regression Peter Goos, University of Leuven and University of Antwerp, Belgium David Meintrup, University of Applied Sciences Ingolstadt, Germany A first course on basic statistical methodology using JMP This book provides a first course on parameter estimation (point estimates and confidence interval estimates), hypothesis testing, ANOVA and simple linear regression. The authors approach combines mathematical depth with numerous examples and demonstrations using the JMP software. Key features: Provides a comprehensive and rigorous presentation of introductory statistics that has been extensively classroom tested. Pays attention to the usual parametric hypothesis tests as well as to non-parametric tests (including the calculation of exact p-values). Discusses the power of various statistical tests, along with examples in JMP to enable in-sight into this difficult topic. Promotes the use of graphs and confidence intervals in addition to p-values. Course materials and tutorials for teaching are available on the book's companion website. Masters and advanced students in applied statistics, industrial engineering, business engineering, civil engineering and bio-science engineering will find this book beneficial. It also provides a useful resource for teachers of statistics particularly in the area of engineering.
James Schott R. Matrix Analysis for Statistics James Schott R. Matrix Analysis for Statistics Новинка

James Schott R. Matrix Analysis for Statistics

9372.7 руб.
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Andre Khuri I. Matrix Algebra Useful for Statistics Andre Khuri I. Matrix Algebra Useful for Statistics Новинка

Andre Khuri I. Matrix Algebra Useful for Statistics

10123.22 руб.
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.
Tim Hesterberg C. Mathematical Statistics with Resampling and R Tim Hesterberg C. Mathematical Statistics with Resampling and R Новинка

Tim Hesterberg C. Mathematical Statistics with Resampling and R

9259.7 руб.
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on «Google Interview Questions» that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
Daniel Denis J. Applied Univariate, Bivariate, and Multivariate Statistics Daniel Denis J. Applied Univariate, Bivariate, and Multivariate Statistics Новинка

Daniel Denis J. Applied Univariate, Bivariate, and Multivariate Statistics

9748.31 руб.
A clear and efficient balance between theory and application of statistical modeling techniques in the social and behavioral sciences Written as a general and accessible introduction, Applied Univariate, Bivariate, and Multivariate Statistics provides an overview of statistical modeling techniques used in fields in the social and behavioral sciences. Blending statistical theory and methodology, the book surveys both the technical and theoretical aspects of good data analysis. Featuring applied resources at various levels, the book includes statistical techniques such as t-tests and correlation as well as more advanced procedures such as MANOVA, factor analysis, and structural equation modeling. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. Applied Univariate, Bivariate, and Multivariate Statistics also features Demonstrations of statistical techniques using software packages such as R and SPSS® Examples of hypothetical and real data with subsequent statistical analyses Historical and philosophical insights into many of the techniques used in modern social science A companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options An ideal textbook for courses in statistics and methodology at the upper- undergraduate and graduate-levels in psychology, political science, biology, sociology, education, economics, communications, law, and survey research, Applied Univariate, Bivariate, and Multivariate Statistics is also a useful reference for practitioners and researchers in their field of application. DANIEL J. DENIS, PhD, is Associate Professor of Quantitative Psychology at the University of Montana where he teaches courses in univariate and multivariate statistics. He has published a number of articles in peer-reviewed journals and has served as consultant to researchers and practitioners in a variety of fields.
Svein Nyberg Olav The Bayesian Way: Introductory Statistics for Economists and Engineers Svein Nyberg Olav The Bayesian Way: Introductory Statistics for Economists and Engineers Новинка

Svein Nyberg Olav The Bayesian Way: Introductory Statistics for Economists and Engineers

7343.9 руб.
A comprehensive resource that offers an introduction to statistics with a Bayesian angle, for students of professional disciplines like engineering and economics The Bayesian Way offers a basic introduction to statistics that emphasizes the Bayesian approach and is designed for use by those studying professional disciplines like engineering and economics. In addition to the Bayesian approach, the author includes the most common techniques of the frequentist approach. Throughout the text, the author covers statistics from a basic to a professional working level along with a practical understanding of the matter at hand. Filled with helpful illustrations, this comprehensive text explores a wide range of topics, starting with descriptive statistics, set theory, and combinatorics. The text then goes on to review fundamental probability theory and Bayes' theorem. The first part ends in an exposition of stochastic variables, exploring discrete, continuous and mixed probability distributions. In the second part, the book looks at statistical inference. Primarily Bayesian, but with the main frequentist techniques included, it covers conjugate priors through the powerful yet simple method of hyperparameters. It then goes on to topics in hypothesis testing (including utility functions), point and interval estimates (including frequentist confidence intervals), and linear regression. This book: Explains basic statistics concepts in accessible terms and uses an abundance of illustrations to enhance visual understanding Has guides for how to calculate the different probability distributions, functions , and statistical properties, on platforms like popular pocket calculators and Mathematica / Wolfram Alpha Includes example-proofs that enable the reader to follow the reasoning Contains assignments at different levels of difficulty from simply filling out the correct formula to the complex multi-step text assignments Offers information on continuous, discrete and mixed probability distributions, hypothesis testing, credible and confidence intervals, and linear regression Written for undergraduate and graduate students of subjects where Bayesian statistics are applied, including engineering, economics, and related fields, The Bayesian Way: With Applications in Engineering and Economics offers a clear understanding of Bayesian statistics that have real-world applications.
Abbas Mirakhor Introductory Mathematics and Statistics for Islamic Finance Abbas Mirakhor Introductory Mathematics and Statistics for Islamic Finance Новинка

Abbas Mirakhor Introductory Mathematics and Statistics for Islamic Finance

3189.81 руб.
A unique primer on quantitative methods as applied to Islamic finance Introductory Mathematics and Statistics for Islamic Finance + Website is a comprehensive guide to quantitative methods, specifically as applied within the realm of Islamic finance. With applications based on research, the book provides readers with the working knowledge of math and statistics required to understand Islamic finance theory and practice. The numerous worked examples give students with various backgrounds a uniform set of common tools for studying Islamic finance. The in-depth study of finance requires a strong foundation in quantitative methods. Without a good grasp of math, probability, and statistics, published theoretical and applied works in Islamic finance remain out of reach. Unlike a typical math text, this book guides students through only the methods that directly apply to Islamic finance, without wasting time on irrelevant techniques. Each chapter contains a detailed explanation of the topic at hand, followed by an example based on real situations encountered in Islamic finance. Topics include: Algebra and matrices Calculus and differential equations Probability theory Statistics Written by leading experts on the subject, the book serves as a useful primer on the analysis methods and techniques students will encounter in published research, as well as day-to-day operations in finance. Anyone aspiring to be successful in Islamic finance needs these skills, and Introductory Mathematics and Statistics for Islamic Finance + Website is a clear, concise, and highly relevant guide.
Stanislav Kolenikov Statistics in the Social Sciences. Current Methodological Developments Stanislav Kolenikov Statistics in the Social Sciences. Current Methodological Developments Новинка

Stanislav Kolenikov Statistics in the Social Sciences. Current Methodological Developments

7720.11 руб.
A one-of-a-kind compilation of modern statistical methods designed to support and advance research across the social sciences Statistics in the Social Sciences: Current Methodological Developments presents new and exciting statistical methodologies to help advance research and data analysis across the many disciplines in the social sciences. Quantitative methods in various subfields, from psychology to economics, are under demand for constant development and refinement. This volume features invited overview papers, as well as original research presented at the Sixth Annual Winemiller Conference: Methodological Developments of Statistics in the Social Sciences, an international meeting that focused on fostering collaboration among mathematical statisticians and social science researchers. The book provides an accessible and insightful look at modern approaches to identifying and describing current, effective methodologies that ultimately add value to various fields of social science research. With contributions from leading international experts on the topic, the book features in-depth coverage of modern quantitative social sciences topics, including: Correlation Structures Structural Equation Models and Recent Extensions Order-Constrained Proximity Matrix Representations Multi-objective and Multi-dimensional Scaling Differences in Bayesian and Non-Bayesian Inference Bootstrap Test of Shape Invariance across Distributions Statistical Software for the Social Sciences Statistics in the Social Sciences: Current Methodological Developments is an excellent supplement for graduate courses on social science statistics in both statistics departments and quantitative social sciences programs. It is also a valuable reference for researchers and practitioners in the fields of psychology, sociology, economics, and market research.
Joan Welkowitz Introductory Statistics for the Behavioral Sciences Joan Welkowitz Introductory Statistics for the Behavioral Sciences Новинка

Joan Welkowitz Introductory Statistics for the Behavioral Sciences

10497.42 руб.
A comprehensive and user-friendly introduction to statistics for behavioral science students—revised and updated Refined over seven editions by master teachers, this book gives instructors and students alike clear examples and carefully crafted exercises to support the teaching and learning of statistics for both manipulating and consuming data. One of the most popular and respected statistics texts in the behavioral sciences, the Seventh Edition of Introductory Statistics for the Behavioral Sciences has been fully revised. The new edition presents all the topics students in the behavioral sciences need in a uniquely accessible and easy-to-understand format, aiding in the comprehension and implementation of the statistical analyses most commonly used in the behavioral sciences. The Seventh Edition features: A continuous narrative that clearly explains statistics while tracking a common data set throughout, making the concepts unintimidating and memorable, and providing a framework that connects all of the topics and allows for easy comparison of different statistical analyses Coverage of important aspects of research design throughout the text, such as the «correlation is not causality» principle Updated and annotated SPSS output at the end of each chapter with step-by-step instructions Updated examples and exercises An expanded website, at www.wiley.com/go/welkowitz, with test bank, chapter quizzes, and PowerPoint slides for instructors, as well as a second website for students with additional basic math coverage, math review exercises, a study guide, a set of additional SPSS exercises, and more downloadable data sets
Eugene Hahn D. Bayesian Methods for Management and Business. Pragmatic Solutions for Real Problems Eugene Hahn D. Bayesian Methods for Management and Business. Pragmatic Solutions for Real Problems Новинка

Eugene Hahn D. Bayesian Methods for Management and Business. Pragmatic Solutions for Real Problems

9672.91 руб.
HIGHLIGHTS THE USE OF BAYESIAN STATISTICS TO GAIN INSIGHTS FROM EMPIRICAL DATA Featuring an accessible approach, Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems demonstrates how Bayesian statistics can help to provide insights into important issues facing business and management. The book draws on multidisciplinary applications and examples and utilizes the freely available software WinBUGS and R to illustrate the integration of Bayesian statistics within data-rich environments. Computational issues are discussed and integrated with coverage of linear models, sensitivity analysis, Markov Chain Monte Carlo (MCMC), and model comparison. In addition, more advanced models including hierarchal models, generalized linear models, and latent variable models are presented to further bridge the theory and application in real-world usage. Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems also features: Numerous real-world examples drawn from multiple management disciplines such as strategy, international business, accounting, and information systems An incremental skill-building presentation based on analyzing data sets with widely applicable models of increasing complexity An accessible treatment of Bayesian statistics that is integrated with a broad range of business and management issues and problems A practical problem-solving approach to illustrate how Bayesian statistics can help to provide insight into important issues facing business and management Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems is an important textbook for Bayesian statistics courses at the advanced MBA-level and also for business and management PhD candidates as a first course in methodology. In addition, the book is a useful resource for management scholars and practitioners as well as business academics and practitioners who seek to broaden their methodological skill sets.
Sondipon Adhikari Probabilistic Finite Element Model Updating Using Bayesian Statistics. Applications to Aeronautical and Mechanical Engineering Sondipon Adhikari Probabilistic Finite Element Model Updating Using Bayesian Statistics. Applications to Aeronautical and Mechanical Engineering Новинка

Sondipon Adhikari Probabilistic Finite Element Model Updating Using Bayesian Statistics. Applications to Aeronautical and Mechanical Engineering

8348.99 руб.
Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.
William Bolstad M. Understanding Computational Bayesian Statistics William Bolstad M. Understanding Computational Bayesian Statistics Новинка

William Bolstad M. Understanding Computational Bayesian Statistics

11264.9 руб.
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.
Poduri Rao S.R.S. Statistical Methodologies with Medical Applications Poduri Rao S.R.S. Statistical Methodologies with Medical Applications Новинка

Poduri Rao S.R.S. Statistical Methodologies with Medical Applications

7498.16 руб.
This book presents the methodology and applications of a range of important topics in statistics, and is designed for graduate students in Statistics and Biostatistics and for medical researchers. Illustrations and more than ninety exercises with solutions are presented. They are constructed from the research findings of the medical journals, summary reports of the Centre for Disease Control (CDC) and the World Health Organization (WHO), and practical situations. The illustrations and exercises are related to topics such as immunization, obesity, hypertension, lipid levels, diet and exercise, harmful effects of smoking and air pollution, and the benefits of gluten free diet. This book can be recommended for a one or two semester graduate level course for students studying Statistics, Biostatistics, Epidemiology and Health Sciences. It will also be useful as a companion for medical researchers and research oriented physicians.
Rowntree Derek Statistics without Tears. An Introduction For Non-Mathematicians Rowntree Derek Statistics without Tears. An Introduction For Non-Mathematicians Новинка

Rowntree Derek Statistics without Tears. An Introduction For Non-Mathematicians

1439 руб.
This book is written for anyone who needs or wants to know how statistics work. It assumes no expert knowledge, and teaches through words and diagrams rather than through figures, formulae and equations - providing the perfect approach for the non-mathematical reader. Written as a "tutorial in print", Derek Rowntree includes questions in his argument; readers can answer them as they go, enabling them to measure their performance and judge how far they have mastered the subject.

кешбака
Страницы:


"…this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Продажа multiparametric statistics лучших цены всего мира
Посредством этого сайта магазина - каталога товаров мы очень легко осуществляем продажу multiparametric statistics у одного из интернет-магазинов проверенных фирм. Определитесь с вашими предпочтениями один интернет-магазин, с лучшей ценой продукта. Прочитав рекомендации по продаже multiparametric statistics легко охарактеризовать производителя как превосходную и доступную фирму.